test_image_classification_fp16.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import contextlib
import math
import sys
import numpy
import unittest
import os
25
import copy
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
import numpy as np


def resnet_cifar10(input, depth=32):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    def shortcut(input, ch_in, ch_out, stride):
        if ch_in != ch_out:
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
        else:
            return input

    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
        short = shortcut(input, ch_in, ch_out, stride)
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')

    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
        for i in range(1, count):
            tmp = block_func(tmp, ch_out, ch_out, 1)
        return tmp

    assert (depth - 2) % 6 == 0
    n = (depth - 2) // 6
    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    return pool


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
    return fc2


def train(net_type, use_cuda, save_dirname, is_local):
    classdim = 10
    data_shape = [3, 32, 32]

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    train_program.random_seed = 123
    startup_prog.random_seed = 456
    with fluid.program_guard(train_program, startup_prog):
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        if net_type == "vgg":
            print("train vgg net")
119
            net = vgg16_bn_drop(images)
120 121
        elif net_type == "resnet":
            print("train resnet")
122
            net = resnet_cifar10(images, 32)
123 124 125 126 127 128 129 130 131 132 133 134
        else:
            raise ValueError("%s network is not supported" % net_type)

        logits = fluid.layers.fc(input=net, size=classdim, act="softmax")
        cost, predict = fluid.layers.softmax_with_cross_entropy(
            logits, label, return_softmax=True)
        avg_cost = fluid.layers.mean(cost)
        acc = fluid.layers.accuracy(input=predict, label=label)

        # Test program
        test_program = train_program.clone(for_test=True)

Y
Yibing Liu 已提交
135
        optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
136

137 138
        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            custom_black_varnames={"loss", "conv2d_0.w_0"})
139
        mp_optimizer = fluid.contrib.mixed_precision.decorate(
J
Jie Fang 已提交
140
            optimizer=optimizer,
141
            amp_lists=amp_lists,
J
Jie Fang 已提交
142 143
            init_loss_scaling=8.0,
            use_dynamic_loss_scaling=True)
144

G
gongweibao 已提交
145
        mp_optimizer.minimize(avg_cost)
146 147
        loss_scaling = mp_optimizer.get_loss_scaling()
        scaled_loss = mp_optimizer.get_scaled_loss()
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    BATCH_SIZE = 128
    PASS_NUM = 1

    # no shuffle for unit test
    train_reader = paddle.batch(
        paddle.dataset.cifar.train10(), batch_size=BATCH_SIZE)

    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])

    def train_loop(main_program):
        exe.run(startup_prog)
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                np_scaled_loss, loss = exe.run(
                    main_program,
                    feed=feeder.feed(data),
                    fetch_list=[scaled_loss, avg_cost])
                print(
                    'PassID {0:1}, BatchID {1:04}, train loss {2:2.4}, scaled train closs {3:2.4}'.
                    format(pass_id, batch_id + 1,
                           float(loss), float(np_scaled_loss)))
                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

                    print(
                        'PassID {0:1}, BatchID {1:04}, test loss {2:2.2}, acc {3:2.2}'.
                        format(pass_id, batch_id + 1,
                               float(avg_loss_value), float(acc_value)))

                    if acc_value > 0.08:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(
                            save_dirname, ["pixel"], [predict],
                            exe,
                            main_program=train_program)
                        return

    if is_local:
        train_loop(train_program)
    else:
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
239
        # the feed_target_names (the names of variables that will be fed
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

        print("infer results: ", results[0])

        fluid.io.save_inference_model(save_dirname, feed_target_names,
259
                                      fetch_targets, exe, inference_program)
260 261 262 263 264 265 266 267 268 269 270 271 272 273


def main(net_type, use_cuda, is_local=True):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

    train(net_type, use_cuda, save_dirname, is_local)
    #infer(use_cuda, save_dirname)


class TestImageClassification(unittest.TestCase):
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    def test_amp_lists(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists()
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_1(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 1. w={'exp}, b=None
        white_list.add('exp')
        black_list.remove('exp')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            {'exp'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_2(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 2. w={'tanh'}, b=None
        white_list.add('tanh')
        gray_list.remove('tanh')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            {'tanh'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_3(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 3. w={'lstm'}, b=None
        white_list.add('lstm')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            {'lstm'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_4(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 4. w=None, b={'conv2d'}
        white_list.remove('conv2d')
        black_list.add('conv2d')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            custom_black_list={'conv2d'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_5(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 5. w=None, b={'tanh'}
        black_list.add('tanh')
        gray_list.remove('tanh')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            custom_black_list={'tanh'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_6(self):
        white_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.white_list)
        black_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.black_list)
        gray_list = copy.copy(
            fluid.contrib.mixed_precision.fp16_lists.gray_list)

        # 6. w=None, b={'lstm'}
        black_list.add('lstm')

        amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
            custom_black_list={'lstm'})
        self.assertEqual(amp_lists.white_list, white_list)
        self.assertEqual(amp_lists.black_list, black_list)
        self.assertEqual(amp_lists.gray_list, gray_list)

    def test_amp_lists_7(self):
        # 7. w={'lstm'} b={'lstm'}
        # raise ValueError
        self.assertRaises(ValueError,
                          fluid.contrib.mixed_precision.AutoMixedPrecisionLists,
                          {'lstm'}, {'lstm'})

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()