op_converter.h 9.3 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
27 28 29 30 31

namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35 36 37 38 39 40 41 42 43 44 45
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
P
Pei Yang 已提交
46 47
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
48 49 50
  return TRT_DT::kINT32;
}

P
Pei Yang 已提交
51 52
nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape,
                            std::string input) {
53
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
P
Pei Yang 已提交
54 55 56 57
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at least 2 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
58
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
P
Pei Yang 已提交
59 60 61 62
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
63 64
  if (shape.size() == 4UL)
    return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
P
Pei Yang 已提交
65 66
  else if (shape.size() == 3UL)
    return nvinfer1::Dims2(shape[1], shape[2]);
67 68 69 70 71
  return nvinfer1::DimsCHW(shape[1], 1, 1);
}

}  // namespace // NOLINT

L
Luo Tao 已提交
72 73 74 75 76 77
/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
78

79 80
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
81 82
                          const framework::Scope& scope,
                          bool test_mode = false) {}
83

84 85
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
86 87
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
88 89
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
90
    framework::OpDesc op_desc(op, nullptr);
91 92

    OpConverter* it{nullptr};
L
Luo Tao 已提交
93

94 95 96 97
    if (op_desc.Type() == "mul") {
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
98
        it = Registry<OpConverter>::Global().Lookup("fc");
99 100
      }
    }
N
nhzlx 已提交
101 102 103 104 105 106
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
107
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
N
nhzlx 已提交
108 109 110 111 112 113 114
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        PADDLE_ENFORCE(add_weight_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
115 116
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
117 118
        PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                                op_desc.Type());
N
nhzlx 已提交
119 120 121
      } else {
        PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
122 123
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
124
      }
N
nhzlx 已提交
125 126 127 128 129
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (op_desc.Type() == "depthwise_conv2d") {
130
      it = Registry<OpConverter>::Global().Lookup("conv2d");
N
nhzlx 已提交
131 132
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
N
nhzlx 已提交
133 134
    }

135
    if (!it) {
136
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
137 138 139 140
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                            op_desc.Type());
    it->SetEngine(engine);
141
    (*it)(op, scope, test_mode);
L
Luo Tao 已提交
142 143
  }

Y
Yan Chunwei 已提交
144 145
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
146
  void ConvertBlock(const framework::proto::BlockDesc& block,
147 148
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
149
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
150
    for (int i = 0; i < block.ops_size(); i++) {
151
      const auto& op = block.ops(i);
152
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
153 154 155
    }
  }

N
nhzlx 已提交
156
  // The scope  here should be inited with the parameter vars.
157 158 159 160 161 162 163 164 165 166 167 168
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
N
nhzlx 已提交
169 170
      auto var_shape = var->GetShape();

171 172 173
      engine->DeclareInput(
          input, FluidDataType2TRT(
                     var->Proto()->type().lod_tensor().tensor().data_type()),
P
Pei Yang 已提交
174
          Vec2TRT_Dims(var_shape, input));
175 176 177 178 179 180 181
    }
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
182
    engine->ClearWeights();
183 184
  }

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
200 201
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
202 203
  virtual ~OpConverter() {}

L
Luo Tao 已提交
204 205 206
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

207 208 209
 protected:
  bool test_mode_;

L
Luo Tao 已提交
210 211 212 213 214
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
215
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
216
  std::mutex mut_;
L
Luo Tao 已提交
217 218
};

219 220 221 222
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

223 224 225
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
226 227 228
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
229 230 231 232 233 234 235 236
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

237 238 239
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
240
      TouchConverterRegister_##op_type__();