conv_transpose_op.cc 13.6 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
32
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
33

C
chengduoZH 已提交
34 35 36 37 38 39 40 41 42
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
43
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
44
                    "dimension should be the same.");
C
chengduoZH 已提交
45 46 47
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
48 49 50
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
53
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
54
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
C
chengduoZH 已提交
55
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] +
C
chengduoZH 已提交
56
                           filter_extent);
C
chengduoZH 已提交
57
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

78 79
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
80 81 82 83 84
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
85 86
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
87 88 89 90 91 92 93 94
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
95
  AddOutput("Output",
C
chengduoZH 已提交
96
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
97
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
98 99 100 101 102 103

  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
104 105
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
106
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
107
      "convolution transpose operator.")
C
chengduoZH 已提交
108
      .SetDefault({1, 1});
C
chengduoZH 已提交
109 110
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
111
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
112
      "transpose operator.")
C
chengduoZH 已提交
113
      .SetDefault({0, 0});
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
133
  AddComment(R"DOC(
C
chengduoZH 已提交
134 135
Convolution2D Transpose Operator.

C
chengduoZH 已提交
136
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
137
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
138
parameters is checked in the infer-shape.
C
chengduoZH 已提交
139 140 141 142 143 144 145
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
146
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
147

C
chengduoZH 已提交
148 149
Example:
  Input:
C
chengduoZH 已提交
150 151
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
152
  Output:
C
chengduoZH 已提交
153 154 155 156 157 158
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
  $$
C
chengduoZH 已提交
159 160 161
)DOC");
}

162 163
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
164
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
165 166 167 168 169 170
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
171 172
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
173 174 175
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
176 177
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
178
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
179
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
180 181 182 183
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
184 185
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
186 187 188 189 190 191 192

  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
193
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
194
                            "(vector<int> default:{1, 1, 1}), the "
195
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
196
                            "convolution transpose operator.")
C
chengduoZH 已提交
197
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
198
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
199
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
200
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
201
      .SetDefault({0, 0, 0});
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
221
  AddComment(R"DOC(
C
chengduoZH 已提交
222 223
Convolution3D Transpose Operator.

C
chengduoZH 已提交
224
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
225
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
226
parameters is checked in the infer-shape.
C
chengduoZH 已提交
227 228 229 230 231 232 233 234
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
235
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
236 237

Example:   
C
chengduoZH 已提交
238
  Input:
C
chengduoZH 已提交
239 240
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
241
  Output:
C
chengduoZH 已提交
242 243 244 245 246 247 248
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
  $$
C
chengduoZH 已提交
249 250 251
)DOC");
}

C
chengduoZH 已提交
252
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
253 254 255 256 257 258 259 260 261 262
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
280 281 282 283
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
284

C
chengduoZH 已提交
285 286
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
287 288

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
289
    conv2d_transpose,
Q
QI JUN 已提交
290 291
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
292
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
293
    conv2d_transpose_grad,
Q
QI JUN 已提交
294 295 296
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
297

C
chengduoZH 已提交
298 299
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
300 301

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
302
    conv3d_transpose,
Q
QI JUN 已提交
303 304
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
305
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
306
    conv3d_transpose_grad,
Q
QI JUN 已提交
307 308 309
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);