cross_entropy_op.h 2.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include "paddle/operators/type_alias.h"
Q
Qiao Longfei 已提交
17 18 19 20

namespace paddle {
namespace operators {

Y
Yan Chunwei 已提交
21 22
static const float kCrossEntropyLogThreshold{1e-20};

Q
Qiao Longfei 已提交
23
template <typename Place, typename T>
24
class OnehotCrossEntropyOpKernel : public OpKernel {
25
 public:
26
  void Compute(const ExecutionContext& ctx) const override {
Y
Yan Chunwei 已提交
27 28
    auto X = ctx.Input<Tensor>("X");
    const T* Xdata = X->data<T>();
29
    const int* label_data = ctx.Input<Tensor>(1)->data<int>();
Y
Yan Chunwei 已提交
30
    auto Y = ctx.Output<Tensor>("Y");
Q
Qiao Longfei 已提交
31

32
    Y->mutable_data<T>(ctx.GetPlace());
Q
Qiao Longfei 已提交
33

Y
Yan Chunwei 已提交
34
    T* Ydata = Y->data<T>();
Q
Qiao Longfei 已提交
35

36 37
    int batch_size = X->dims()[0];
    int class_num = X->dims()[1];
Q
Qiao Longfei 已提交
38 39 40

    // Y[i] = -log(X[i][j])
    for (int i = 0; i < batch_size; ++i) {
Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
      Ydata[i] = -std::log(std::max(Xdata[i * class_num + label_data[i]],
                                    kCrossEntropyLogThreshold));
    }
  }
};

template <typename Place, typename T>
class OnehotCrossEntropyGradientOpKernel : public OpKernel {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    auto X = ctx.Input<Tensor>("X");
    auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("label");

    auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
    auto* dYdata = dY->template data<T>();
    auto* Xdata = X->template data<T>();
    auto* label_data = label->data<int>();

    const int batch_size = X->dims()[0];
    const int class_num = X->dims()[1];

    for (int i = 0; i < batch_size; ++i) {
      dXdata[i * class_num + label_data[i]] =
          -dYdata[i] / std::max(Xdata[i * class_num + label_data[i]],
                                kCrossEntropyLogThreshold);
Q
Qiao Longfei 已提交
68 69 70 71 72 73
    }
  }
};

}  // namespace operators
}  // namespace paddle