test_word2vec.py 2.8 KB
Newer Older
Q
Qiao Longfei 已提交
1
import numpy as np
Q
QI JUN 已提交
2
import paddle.v2 as paddle
3
import paddle.v2.fluid as fluid
Q
QI JUN 已提交
4

5 6 7
PASS_NUM = 100
EMBED_SIZE = 32
HIDDEN_SIZE = 256
Q
QI JUN 已提交
8
N = 5
9 10
BATCH_SIZE = 32
IS_SPARSE = True
Q
QI JUN 已提交
11 12 13 14

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

15 16 17 18 19
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
Q
QI JUN 已提交
20

21
embed_first = fluid.layers.embedding(
Q
QI JUN 已提交
22
    input=first_word,
23
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
24
    dtype='float32',
25
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
26
    param_attr='shared_w')
27
embed_second = fluid.layers.embedding(
Q
QI JUN 已提交
28
    input=second_word,
29
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
30
    dtype='float32',
31
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
32
    param_attr='shared_w')
33
embed_third = fluid.layers.embedding(
Q
QI JUN 已提交
34
    input=third_word,
35
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
36
    dtype='float32',
37
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
38
    param_attr='shared_w')
39
embed_forth = fluid.layers.embedding(
Q
QI JUN 已提交
40
    input=forth_word,
41
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
42
    dtype='float32',
43
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
44
    param_attr='shared_w')
Q
QI JUN 已提交
45

46
concat_embed = fluid.layers.concat(
Q
Qiao Longfei 已提交
47
    input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
48 49 50 51 52 53
hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
Q
QI JUN 已提交
54 55

train_reader = paddle.batch(
56
    paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
Q
QI JUN 已提交
57

58 59
place = fluid.CPUPlace()
exe = fluid.Executor(place)
Q
QI JUN 已提交
60

61
exe.run(fluid.default_startup_program())
62

Q
QI JUN 已提交
63 64 65
for pass_id in range(PASS_NUM):
    for data in train_reader():
        input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)]
66
        input_data = map(lambda x: np.array(x).astype("int64"), input_data)
Q
QI JUN 已提交
67 68
        input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)

69 70 71 72 73 74 75 76 77
        avg_cost_np = exe.run(fluid.default_main_program(),
                              feed={
                                  'firstw': input_data[0],
                                  'secondw': input_data[1],
                                  'thirdw': input_data[2],
                                  'forthw': input_data[3],
                                  'nextw': input_data[4]
                              },
                              fetch_list=[avg_cost])
Q
QI JUN 已提交
78
        if avg_cost_np[0] < 5.0:
Q
QI JUN 已提交
79 80
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)