cinn_launch_op.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/cinn_launch_op.h"
16
#include "paddle/fluid/string/string_helper.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
namespace details {

const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    return ::cinn::common::DefaultHostTarget();
  } else if (platform::is_gpu_place(place)) {
    return ::cinn::common::DefaultNVGPUTarget();
  }

  PADDLE_THROW(platform::errors::InvalidArgument(
      "CINN is not supported on current place:%s", place));
  return ::cinn::common::UnkTarget();
}

void DebugCinnCompiledResult(const CinnCompiledObject& result) {
  if (!VLOG_IS_ON(4)) {
    return;
  }
  const auto& cinn_runtime_program = result.runtime_program;
  const auto& cinn_scope = *(result.scope);
  const auto& paddle2cinn_varmap = result.paddle2cinn_varmap;

  VLOG(4) << "Compiled runtime_program instrunction size:["
          << cinn_runtime_program->size() << "]";

  std::vector<std::string> infos;
  auto cinn_var_names = cinn_scope.var_names();
  infos.reserve(cinn_var_names.size());
  std::transform(cinn_var_names.begin(), cinn_var_names.end(),
                 std::back_inserter(infos),
                 [](const auto& name_view) { return name_view.data(); });
  VLOG(4) << "Compiled scope variable names:["
          << string::join_strings(infos, ',') << "]";

  infos.clear();
  infos.reserve(paddle2cinn_varmap.size());
  std::transform(paddle2cinn_varmap.begin(), paddle2cinn_varmap.end(),
                 std::back_inserter(infos), [](const auto& paddle2cinn) {
                   return paddle2cinn.first + "->" + paddle2cinn.second;
                 });
  VLOG(4) << "Compiled paddle2cinn_varmap:[" << string::join_strings(infos, ',')
          << "]";
}

std::vector<std::string> MapPaddleVariablesToCinn(
    const std::vector<std::string>& paddle_names,
    const std::unordered_map<std::string, std::string>& paddle2cinn_varmap) {
  std::vector<std::string> result;
  result.reserve(result.size());
  std::transform(
      paddle_names.begin(), paddle_names.end(), std::back_inserter(result),
      [&paddle2cinn_varmap](const std::string& pd_name) {
        PADDLE_ENFORCE_GT(paddle2cinn_varmap.count(pd_name), 0,
                          platform::errors::NotFound(
                              "Not found the corresponding cinn variable "
                              "of paddle variable(%s) in compilation result.",
                              pd_name));
        return paddle2cinn_varmap.at(pd_name);
      });
  return result;
}

std::vector<CinnTensor> GetCinnTensorsFromCompiledScope(
    const std::vector<std::string>& cinn_names, const CinnScope& cinn_scope) {
  std::vector<CinnTensor> result;
  result.reserve(cinn_names.size());
  std::transform(cinn_names.begin(), cinn_names.end(),
                 std::back_inserter(result),
                 [&cinn_scope](const std::string& var_name) {
                   PADDLE_ENFORCE_NOT_NULL(
                       cinn_scope.FindVar(var_name),
                       platform::errors::NotFound(
                           "Variable(%s) not found in cinn scope.", var_name));
                   return cinn_scope.GetTensor(var_name);
                 });
  return result;
}

void CheckTensorEquivalent(const std::string& paddle_name,
                           const LoDTensor* paddle_tensor,
                           const CinnTensor& cinn_tensor) {
  PADDLE_ENFORCE_EQ(
      paddle_tensor->IsInitialized(), true,
      platform::errors::InvalidArgument(
          "The tensor in variable(%s) is not initialized.", paddle_name));

  // check dimension
  auto cinn_dims = framework::make_ddim(cinn_tensor->shape().data());
  PADDLE_ENFORCE_EQ(paddle_tensor->dims(), cinn_dims,
                    platform::errors::InvalidArgument(
                        "The tensor dimension in variable(%s) "
                        "is not equivalent, paddle is [%s] "
                        "but cinn is [%s].",
                        paddle_name, paddle_tensor->dims(), cinn_dims));

  // TODO(CtfGo): check the underlying data type after CINN ready
}

void TensorMutableDataWithCinnInfo(const platform::Place& place,
                                   const CinnTensor& cinn_tensor,
                                   LoDTensor* paddle_tensor) {
  // TODO(CtfGo): support mutable corresponding c++ type after CINN ready
  paddle_tensor->mutable_data<float>(
      framework::make_ddim(cinn_tensor->shape().data()), place);
}

std::vector<std::string> SeperateTempVar(
    const CinnScope& cinn_scope,
    const std::vector<std::string>& input_cinn_names,
    const std::vector<std::string>& output_cinn_names) {
  auto cinn_var_names = cinn_scope.var_names();
  std::unordered_set<std::string> all_cinn_names;
  all_cinn_names.reserve(cinn_var_names.size());
  std::transform(
      cinn_var_names.begin(), cinn_var_names.end(),
      std::inserter(all_cinn_names, all_cinn_names.end()),
      [](const auto& name_view) { return std::string(name_view.data()); });

  auto exclude_fn = [&all_cinn_names](const auto& cinn_name) {
    PADDLE_ENFORCE_EQ(all_cinn_names.erase(cinn_name), 1,
                      platform::errors::NotFound(
                          "Variable(%s) not found in cinn scope", cinn_name));
  };

  std::for_each(input_cinn_names.begin(), input_cinn_names.end(), exclude_fn);
  std::for_each(output_cinn_names.begin(), output_cinn_names.end(), exclude_fn);
  return {all_cinn_names.begin(), all_cinn_names.end()};
}

std::unique_ptr<cinn_buffer_t> ShareTensorWithCinnBuffer(LoDTensor* tensor) {
  // convert paddle dimensions array to cinn format
  std::vector<cinn_dimension_t> cinn_dims(tensor->dims().size());
  for (auto i = 0; i < tensor->dims().size(); ++i) {
    cinn_dims[i] = static_cast<cinn_dimension_t>(tensor->dims().at(i));
  }

  auto cinn_buffer = std::make_unique<cinn_buffer_t>();
  // assign size and memory
  cinn_buffer->resize(cinn_dims.data(), cinn_dims.size());
  cinn_buffer->memory = reinterpret_cast<uint8_t*>(tensor->data<float>());
  return cinn_buffer;
}

void CheckArgumentsNotMissed(
    const CinnScope& cinn_scope,
    const std::map<std::string, cinn_pod_value_t>& name2argument) {
  auto cinn_var_names = cinn_scope.var_names();
  std::for_each(cinn_var_names.begin(), cinn_var_names.end(),
                [&name2argument](const auto& name_view) {
                  PADDLE_ENFORCE_GT(
                      name2argument.count(name_view.data()), 0,
                      platform::errors::InvalidArgument(
                          "Parameter(%s) is not assgined.", name_view.data()));
                });
}

}  // namespace details

179 180 181 182 183 184
class CinnLaunchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInputs(kX), "Input", kX, "CinnLaunchOp");
185
    OP_INOUT_CHECK(ctx->HasOutputs(kOutputs), "Output", kOutputs,
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                   "CinnLaunchOp");
  }

 protected:
  /* [Why use single type kernel]:
   *
   * This op is similar to a control flow op, it doses not need
   * a op kernel, but in order to make it execute under dynamic
   * graph mode, implement it with op kernel.
   *
   * So whether the kernel data type is int, float or other type,
   * which has no effect on its execution logic, so directly
   * specified a data type here.
   *
   * Of course, the data type here is also not important.
   */

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(framework::proto::VarType::FP32,
                                   ctx.GetPlace());
  }
};

class CinnLaunchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(kX,
             "(vector<LoDTensor>)"
             "which are the input of graph inside the CinnLaunchOp.")
        .AsDuplicable();
    AddOutput(kOutputs,
              "(vector<LoDTensor>)"
              "which are the output of graph inside the CinnLaunchOp.")
        .AsDuplicable();
    AddAttr<std::string>(
        kCompilationKey,
        "(string)"
        "a hash key used to get the graph object or its computation result.");
    AddComment(R"DOC(
CinnLaunch Operator.

This operator is used to launch CINN(https://github.com/PaddlePaddle/CINN/blob/develop/README.md)
to compile a graph and execute the compiled object.

Both input and output of this operator are a set of variables
which are input and output of the graph respectively that will be
compiled and executed in this operator.
In addition, there is an attribute named 'compilation_key' should be
set necessarily to get corresponding ir::Graph object of the graph
or its computation result.

238
It accomplishes the computation of graph following several steps:
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  1. Fetch ir::Graph object from CinnCompiler using kCompilationKey
  2. Compile the graph to a compiled object, and insert it to the
     global cache so that we can directly query it from this cache next time
     when shape of input variables are not changed at all.
  3. Create and instantiate all variables used to execute compiled runtime program
     if necessary according to the info(type,shape) included in the return scope.
  4. Pack each tensor buffer of all above variables as execution arguments.
  5. Launch execution of the runtime program with above arguments, then
     the result would be output by writing value on underlying buffer address.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(
    cinn_launch, ops::CinnLaunchOp, ops::CinnLaunchOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
/* see [Why use single type kernel] */
REGISTER_OP_CPU_KERNEL(
    cinn_launch,
    ops::CinnLaunchOpKernel<paddle::platform::CPUDeviceContext, float>);