test_asp_optimize.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import threading, time
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23
from paddle.static import sparsity
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
from paddle.fluid.contrib.sparsity.asp import ASPHelper
import numpy as np

paddle.enable_static()


class TestASPHelper(unittest.TestCase):
    def setUp(self):
        self.main_program = fluid.Program()
        self.startup_program = fluid.Program()

        def build_model():
            img = fluid.data(
                name='img', shape=[None, 3, 32, 32], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = fluid.layers.conv2d(
                input=img, num_filters=4, filter_size=3, padding=2, act="relu")
            hidden = fluid.layers.fc(input=hidden, size=32, act='relu')
            prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
            return img, label, prediction

        with fluid.program_guard(self.main_program, self.startup_program):
            self.img, self.label, predict = build_model()
            self.loss = fluid.layers.mean(
                fluid.layers.cross_entropy(
                    input=predict, label=self.label))
            self.optimizer = fluid.optimizer.SGD(learning_rate=0.01)

    def test_get_not_ASP_relevant_vars(self):
        def check_params(params, params_from_asp):
            if len(params_from_asp) != len(params):
                return False

            for i, p in enumerate(params_from_asp):
                if p.name != params[i].name:
                    return False
            return True

        params = self.main_program.global_block().all_parameters()
        params_from_asp = ASPHelper._get_not_ASP_relevant_vars(
            self.main_program)
        self.assertTrue(check_params(params, params_from_asp))

        with fluid.program_guard(self.main_program, self.startup_program):
            ASPHelper._minimize(self.optimizer, self.loss, self.main_program,
                                self.startup_program)
        params_from_asp_after_opt = ASPHelper._get_not_ASP_relevant_vars(
            self.main_program)
        self.assertTrue(check_params(params, params_from_asp_after_opt))

    def test_is_supported_layers(self):
        program = paddle.static.default_main_program()

        names = [
            'embedding_0.w_0', 'fack_layer_0.w_0', 'conv2d_0.w_0',
            'conv2d_0.b_0', 'conv2d_1.w_0', 'conv2d_1.b_0', 'fc_0.w_0',
            'fc_0.b_0', 'fc_1.w_0', 'fc_1.b_0', 'linear_2.w_0', 'linear_2.b_0'
        ]
        ref = [
            False, False, True, False, True, False, True, False, True, False,
            True, False
        ]
        for i, name in enumerate(names):
            self.assertTrue(
                ref[i] == ASPHelper._is_supported_layer(program, name))

        sparsity.set_excluded_layers(program, ['fc_1', 'conv2d_0'])
        ref = [
            False, False, False, False, True, False, True, False, False, False,
            True, False
        ]
        for i, name in enumerate(names):
            self.assertTrue(
                ref[i] == ASPHelper._is_supported_layer(program, name))

        sparsity.reset_excluded_layers(program)
        ref = [
            False, False, True, False, True, False, True, False, True, False,
            True, False
        ]
        for i, name in enumerate(names):
            self.assertTrue(
                ref[i] == ASPHelper._is_supported_layer(program, name))

    def test_decorate(self):
        param_names = self.__get_param_names(self.main_program.global_block()
                                             .all_parameters())
        with fluid.program_guard(self.main_program, self.startup_program):
            self.optimizer = sparsity.decorate(self.optimizer)
            self.optimizer.minimize(self.loss, self.startup_program)
        param_names_after_minimize = self.__get_param_names(
            self.main_program.global_block().all_parameters())

        self.__check_mask_variables_and_ops(param_names,
                                            param_names_after_minimize)

    def test_asp_training(self):
        with fluid.program_guard(self.main_program, self.startup_program):
            self.optimizer = sparsity.decorate(self.optimizer)
            self.optimizer.minimize(self.loss, self.startup_program)

        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=[self.img, self.label], place=place)

        exe.run(self.startup_program)
132
        sparsity.prune_model(self.main_program)
133 134 135 136 137 138 139 140 141

        data = (np.random.randn(64, 3, 32, 32), np.random.randint(
            10, size=(64, 1)))
        exe.run(self.main_program, feed=feeder.feed([data]))

        for param in self.main_program.global_block().all_parameters():
            if ASPHelper._is_supported_layer(self.main_program, param.name):
                mat = np.array(fluid.global_scope().find_var(param.name)
                               .get_tensor())
142 143 144
                self.assertTrue(
                    paddle.fluid.contrib.sparsity.check_sparsity(
                        mat.T, n=2, m=4))
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    def test_asp_training_with_amp(self):
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            with fluid.program_guard(self.main_program, self.startup_program):
                self.optimizer = fluid.contrib.mixed_precision.decorator.decorate(
                    self.optimizer)
                self.optimizer = sparsity.decorate(self.optimizer)
                self.optimizer.minimize(self.loss, self.startup_program)

            exe = fluid.Executor(place)
            feeder = fluid.DataFeeder(
                feed_list=[self.img, self.label], place=place)

            exe.run(self.startup_program)
160
            sparsity.prune_model(self.main_program)
161 162 163 164 165 166 167 168 169

            data = (np.random.randn(64, 3, 32, 32), np.random.randint(
                10, size=(64, 1)))
            exe.run(self.main_program, feed=feeder.feed([data]))

            for param in self.main_program.global_block().all_parameters():
                if ASPHelper._is_supported_layer(self.main_program, param.name):
                    mat = np.array(fluid.global_scope().find_var(param.name)
                                   .get_tensor())
170 171 172
                    self.assertTrue(
                        paddle.fluid.contrib.sparsity.check_sparsity(
                            mat.T, n=2, m=4))
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    def __get_param_names(self, params):
        param_names = []
        for p in params:
            param_names.append(p.name)
        return param_names

    def __check_mask_variables_and_ops(self, param_names,
                                       param_names_after_minimize):
        for n in param_names:
            self.assertFalse(ASPHelper._is_supported_layer(self.main_program, n) and \
               ASPHelper._get_mask_name(n) not in param_names_after_minimize)

        mask_names = []
        for n in param_names:
            if ASPHelper._is_supported_layer(self.main_program, n):
                mask_names.append(ASPHelper._get_mask_name(n))

        masking_ops = []
        for op in self.main_program.global_block().ops:
            if op.type == 'elementwise_mul' and \
               op.input('Y')[0] in mask_names:
                masking_ops.append(op.input('Y')[0])

        self.assertTrue(len(masking_ops) == len(mask_names))
        for n in masking_ops:
            self.assertTrue(n in mask_names)

        for n in mask_names:
            self.assertTrue(n in masking_ops)


if __name__ == '__main__':
    unittest.main()