inference_process_pass.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/ipu/inference_process_pass.h"

#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"

#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

void InferenceProcessPass::ApplyImpl(ir::Graph* graph) const {
  VLOG(10) << "enter InferenceProcessPass::ApplyImpl";

  // Get a new instance of ipu_backend
32
  auto ipu_backend = platform::ipu::IpuBackend::GetInstance();
33 34 35 36 37 38 39 40 41

  // Set scope
  auto& scope = graph->Get<Scope>(kParamScopeAttr);
  ipu_backend->SetScope(scope);

  // Set ipu_strategy
  static std::shared_ptr<platform::ipu::IpuStrategy> ipu_strategy_instance_(
      new platform::ipu::IpuStrategy());
  ipu_strategy_instance_->is_training = false;
42 43 44 45 46 47 48
  // Set graph replication
  auto replica_num = graph->Get<int>("replica_num");
  if (replica_num > 1) {
    ipu_strategy_instance_->popart_options.enableReplicatedGraphs = true;
    ipu_strategy_instance_->popart_options.replicatedGraphCount = replica_num;
  }
  // Set the num of IPUs
49
  auto num_ipus = graph->Get<int>("num_ipus");
50
  // Set sharding
51
  if (num_ipus > 1) {
52 53
    ipu_strategy_instance_->need_avg_shard = true;
    ipu_strategy_instance_->popart_options.virtualGraphMode =
A
Allen Guo 已提交
54
        popart::VirtualGraphMode::Manual;
55
  } else {
56 57
    ipu_strategy_instance_->need_avg_shard = false;
    ipu_strategy_instance_->popart_options.virtualGraphMode =
A
Allen Guo 已提交
58
        popart::VirtualGraphMode::Off;
59
  }
60 61 62 63 64 65
  // total num IPUs = num_ipus * replica_num
  ipu_strategy_instance_->num_ipus = num_ipus * replica_num;

  // Set micro_batch_size for shape inference
  ipu_strategy_instance_->micro_batch_size =
      graph->Get<int>("micro_batch_size");
66

67
  // Set pipelining
68
  auto enable_pipelining = graph->Get<bool>("enable_pipelining");
69
  ipu_strategy_instance_->popart_options.enablePipelining = enable_pipelining;
70 71 72 73 74 75 76 77
  if (enable_pipelining) {
    auto batches_per_step = graph->Get<int>("batches_per_step");
    PADDLE_ENFORCE_GE(
        batches_per_step, num_ipus,
        platform::errors::InvalidArgument("Batched per step should be equal or "
                                          "greater than the number of IPUs"));
    ipu_strategy_instance_->batches_per_step = batches_per_step;
  }
78 79 80 81 82 83 84 85 86 87 88 89 90 91

  // Set FP16
  auto enable_fp16 = graph->Get<bool>("enable_fp16");
  ipu_strategy_instance_->enable_fp16 = enable_fp16;
  if (enable_fp16) {
    auto enable_half_partial = graph->Get<bool>("enable_half_partial");
    if (enable_half_partial) {
      ipu_strategy_instance_->popart_options.partialsTypeMatMuls = "half";
    }
  }

  // Set available memory proportion for matmul/conv
  ipu_strategy_instance_->available_memory_proportion =
      graph->Get<float>("available_memory_proportion");
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

  ipu_backend->SetIpuStrategy(*(ipu_strategy_instance_.get()));

  // Get feed_list and fetch list
  std::vector<std::string> feed_list = {};
  std::vector<std::string> fetch_list = {};
  for (auto node : graph->Nodes()) {
    if (node->Name() == "feed") {
      if (node->IsOp()) {
        feed_list.push_back("");
      }
    } else if (node->Name() == "fetch") {
      if (node->IsOp()) {
        fetch_list.push_back("");
      }
    }
  }
  for (auto node : graph->Nodes()) {
    if (node->Name() == "feed") {
      if (node->IsOp()) {
        feed_list[BOOST_GET_CONST(int, node->Op()->GetAttr("col"))] =
            node->outputs[0]->Name();
      }
    } else if (node->Name() == "fetch") {
      if (node->IsOp()) {
        fetch_list[BOOST_GET_CONST(int, node->Op()->GetAttr("col"))] =
            node->inputs[0]->Name();
      }
    }
  }

  // Run passes
124 125 126
  std::vector<std::string> graph_pass = {"forward_graph_extract_pass",
                                         "infer_shape_pass", "avg_shard_pass",
                                         "popart_canonicalization_pass"};
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  std::vector<std::string> compile_pass = {
      "ipu_inplace_pass", "ipu_graph_builder_pass", "ipu_runtime_replacer_pass",
      "inference_postprocess_pass"};
  for (auto pass_name : graph_pass) {
    auto pass = PassRegistry::Instance().Get(pass_name);
    if (pass_name == "infer_shape_pass") {
      pass->Set("feed_list", new std::vector<std::string>(feed_list.begin(),
                                                          feed_list.end()));
    }
    pass->Apply(graph);
  }

  for (auto pass_name : compile_pass) {
    auto pass = PassRegistry::Instance().Get(pass_name);
    pass->Set("feed_list",
              new std::vector<std::string>(feed_list.begin(), feed_list.end()));
    pass->Set("fetch_list", new std::vector<std::string>(fetch_list.begin(),
                                                         fetch_list.end()));
    pass->Apply(graph);
  }

  VLOG(10) << "leave InferenceProcessPass::ApplyImpl";
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inference_process_pass,
              paddle::framework::ir::InferenceProcessPass);