test_matmul_op.py 5.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
import unittest
import numpy as np
from op_test import OpTest


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
64 65 66
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
67 68 69 70
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
71 72 73 74
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
99
        self.check_output(atol=1e-3)
M
Markus Kliegl 已提交
100 101

    def test_check_grad_normal(self):
102
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
103 104 105

    def test_check_grad_ignore_x(self):
        self.check_grad(
106
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
M
Markus Kliegl 已提交
107 108 109

    def test_check_grad_ignore_y(self):
        self.check_grad(
110
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
M
Markus Kliegl 已提交
111 112 113 114 115 116 117 118 119 120 121 122


# Generate test cases for all possibilities
for dim_X in [1, 2, 3]:
    for dim_Y in [1, 2, 3]:
        for transpose_X in [False, True]:
            for transpose_Y in [False, True]:
                test_name = (
                    'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                        dim_X, dim_Y, transpose_X, transpose_Y))
                shape_X, shape_Y = generate_compatible_shapes(
                    dim_X, dim_Y, transpose_X, transpose_Y)
C
chengduoZH 已提交
123
                globals()[test_name] = type(test_name, (Generator, OpTest), {
M
Markus Kliegl 已提交
124 125 126 127 128
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
                })
C
chengduoZH 已提交
129 130


C
chengduoZH 已提交
131
# Test case n-dim
C
chengduoZH 已提交
132 133 134 135 136 137 138 139
def generate_compatible_shapes(dim, transpose_X, transpose_Y):
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
140
        shape_X += [K, M]
C
chengduoZH 已提交
141
    else:
C
chengduoZH 已提交
142
        shape_X += [M, K]
C
chengduoZH 已提交
143 144

    if transpose_Y:
C
chengduoZH 已提交
145
        shape_Y += [N, K]
C
chengduoZH 已提交
146
    else:
C
chengduoZH 已提交
147
        shape_Y += [K, N]
C
chengduoZH 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    return shape_X, shape_Y


# Test case n-dim
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
            shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X,
                                                          transpose_Y)
            globals()[test_name] = type(test_name, (Generator, OpTest), {
                'shape_X': shape_X,
                'shape_Y': shape_Y,
                'transpose_X': transpose_X,
                'transpose_Y': transpose_Y,
            })
C
chengduoZH 已提交
167

M
Markus Kliegl 已提交
168 169
if __name__ == "__main__":
    unittest.main()