test_cos_sim_op.py 3.9 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xinghai Sun 已提交
15 16
import unittest
import numpy as np
Q
qijun 已提交
17
from op_test import OpTest
X
Xinghai Sun 已提交
18 19


Q
qijun 已提交
20
class TestCosSimOp(OpTest):
X
Xinghai Sun 已提交
21
    def setUp(self):
Q
qijun 已提交
22
        self.op_type = "cos_sim"
X
Xinghai Sun 已提交
23
        self.inputs = {
24 25
            'X': np.random.random((6, 5)).astype("float32"),
            'Y': np.random.random((6, 5)).astype("float32")
26 27 28 29 30 31 32 33 34
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
X
Xinghai Sun 已提交
35 36
        }

Q
qijun 已提交
37 38
    def test_check_output(self):
        self.check_output()
X
Xinghai Sun 已提交
39

Q
qijun 已提交
40
    def test_check_grad_normal(self):
41
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06)
X
Xinghai Sun 已提交
42

Q
qijun 已提交
43
    def test_check_grad_ingore_x(self):
44
        self.check_grad(
45
            ['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X"))
46

47
    def test_check_grad_ingore_y(self):
X
Xinghai Sun 已提交
48
        self.check_grad(
49
            ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y'))
50

X
Xinghai Sun 已提交
51

52
class TestCosSimOp2(TestCosSimOp):
53
    def setUp(self):
54
        self.op_type = "cos_sim"
55
        self.inputs = {
56 57
            'X': np.random.random((6, 5)).astype("float32"),
            'Y': np.random.random((1, 5)).astype("float32")
58 59 60 61 62 63 64 65 66 67 68 69
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


70
class TestCosSimOp3(TestCosSimOp):
71
    def setUp(self):
72
        self.op_type = "cos_sim"
73
        self.inputs = {
74 75
            'X': np.random.random((6, 5, 2)).astype("float32"),
            'Y': np.random.random((6, 5, 2)).astype("float32")
76 77 78 79 80 81 82 83 84 85 86 87
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


88
class TestCosSimOp4(TestCosSimOp):
89
    def setUp(self):
90
        self.op_type = "cos_sim"
91
        self.inputs = {
92 93
            'X': np.random.random((6, 5, 2)).astype("float32"),
            'Y': np.random.random((1, 5, 2)).astype("float32")
94 95 96 97 98 99 100 101 102 103 104 105
        }
        expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
        expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
        expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
            expect_x_norm / expect_y_norm
        self.outputs = {
            'XNorm': np.expand_dims(expect_x_norm, 1),
            'YNorm': np.expand_dims(expect_y_norm, 1),
            'Out': np.expand_dims(expect_out, 1)
        }


X
Xinghai Sun 已提交
106 107
if __name__ == '__main__':
    unittest.main()