flatten_op.cc 11.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#include "paddle/fluid/operators/flatten_op.h"
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
19 20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

27
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
28
 public:
29 30 31 32 33 34 35
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input (X) of Flatten op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output (Output) of Flatten op should not be null.");
B
Bai Yifan 已提交
36 37
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
38 39 40 41
    PADDLE_ENFORCE_GE(axis, 0,
                      "The axis should be greater than or equal to 0.");
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
B
Bai Yifan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        "The axis should be less than or equal to input tensor's rank.");

    const auto &out_dims = GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
        outer *= in_dims[i];
      } else {
        inner *= in_dims[i];
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

69 70 71
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
72 73 74
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
B
Bai Yifan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

121
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
122
 public:
123 124 125
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
126 127 128 129 130
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

131 132 133
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
B
Bai Yifan 已提交
153 154 155
  }
};

156 157 158 159 160
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
161
class Flatten2Op : public framework::OperatorWithKernel {
162
 public:
163 164 165 166 167 168 169 170
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input (X) of Flatten op should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output (Output) of Flatten op should not be null.");
    const auto &axis = ctx->Attrs().Get<int>("axis");
171
    const auto &in_dims = ctx->GetInputDim("X");
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    PADDLE_ENFORCE_GE(axis, 0,
                      "The axis should be greater than or equal to 0.");
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
        "The axis should be less than or equal to input tensor's rank.");

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output (XShape) of Flatten op should not be null.");
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
209 210
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
211
 public:
H
hong 已提交
212
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
213

H
hong 已提交
214 215
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
216
    grad_op->SetType("flatten2_grad");
H
hong 已提交
217 218 219 220 221
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
222 223 224
  }
};

225
class Flatten2GradOp : public framework::OperatorWithKernel {
226
 public:
227 228 229 230 231 232 233
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
234 235 236 237 238 239
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

240 241 242
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
243 244 245
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
246 247 248
  }
};

249 250 251 252
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInToOut, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceinToOut,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
253 254
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(FlattenGradNoNeedBufferVarsInference,
                                      "X");
D
dzhwinter 已提交
255

B
Bai Yifan 已提交
256 257 258 259
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
260 261 262 263
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
                  ops::FlattenOpInplaceInToOut);
264
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp,
265 266
                  ops::FlattenGradInplaceinToOut,
                  ops::FlattenGradNoNeedBufferVarsInference);
267 268

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
H
hong 已提交
269 270 271
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
                  ops::FlattenOpInplaceInToOut);
272
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                  ops::FlattenGradInplaceinToOut);

REGISTER_OP_CPU_KERNEL(
    flatten, ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2, ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);