multi_devices_graph_builder.cc 7.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
18
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
20 21 22 23

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
24

Y
Yu Yang 已提交
25 26 27
#include <string>
#include <vector>

Y
Yu Yang 已提交
28 29 30
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
31 32

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
33 34 35 36
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
Yu Yang 已提交
37
    const std::vector<Scope *> &local_scopes, bool skip_scale_loss,
T
typhoonzero 已提交
38
    platform::NCCLContextMap *nccl_ctxs)
Y
Yu Yang 已提交
39 40 41 42
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
      nccl_ctxs_(nccl_ctxs) {
Y
Yu Yang 已提交
43 44 45 46
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
Y
Yu Yang 已提交
47 48
    const std::unordered_set<std::string> &params,
    const std::vector<Scope *> &local_scopes, bool skip_scale_loss)
Y
Yu Yang 已提交
49 50
    : loss_var_name_(loss_var_name),
      places_(places),
T
typhoonzero 已提交
51
      local_scopes_(local_scopes) {
Y
Yu Yang 已提交
52
#endif
Y
Yu Yang 已提交
53 54 55
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yu Yang 已提交
56
  skip_scale_loss_ = skip_scale_loss;
Y
Yu Yang 已提交
57 58
}

Y
Yu Yang 已提交
59 60
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
T
wip  
typhoonzero 已提交
61
                                                const platform::Place &p,
T
finish  
typhoonzero 已提交
62
                                                const size_t &i) const {
T
wip  
typhoonzero 已提交
63
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
64 65
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
66

Y
Yu Yang 已提交
67
  auto var_names = op.InputArgumentNames();
T
wip  
typhoonzero 已提交
68 69 70 71 72 73

  for (auto &each_var_name : var_names) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i);
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
74
  var_names = op.OutputArgumentNames();
T
finish  
typhoonzero 已提交
75 76 77

  for (auto &each_var_name : var_names) {
    CreateOpOutput(result, op_handle, each_var_name, p, i);
T
wip  
typhoonzero 已提交
78 79 80
  }
}

Y
Yu Yang 已提交
81 82 83
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
84
  SSAGraph &result = *graph;
C
chengduoZH 已提交
85
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
86 87 88 89 90

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
91 92 93

  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yu Yang 已提交
94 95 96 97 98
    if (op->Type() == "send") {
      // append send op if program is distributed trainer main program.
      // always use the first device
      CreateSendOp(&result, *op);
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
99 100 101
      if (!skip_scale_loss_) {
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
102
      is_forwarding = false;
Y
Yu Yang 已提交
103 104 105 106 107 108 109 110 111 112 113
    } else {
      CreateComputationalOps(&result, *op);
      if (!is_forwarding) {
        // Currently, we assume that once gradient is generated, it can be
        // broadcast, and each gradient is only broadcast once. But there are no
        // other cases, for example, we need to adjust the gradient according to
        // the input when we get the gradient, which is not considered at
        // present.
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
            InsertNCCLAllReduceOp(&result, og);
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121 122 123 124
          }
        }
      }
    }
  }

  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
125

Y
Yu Yang 已提交
126 127 128 129 130
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
131 132 133 134 135 136
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
137
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
138 139 140 141 142 143 144 145 146 147 148 149
}

void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
150 151
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
                                                     const OpDesc &op) const {
  for (size_t scope_idx = 0; scope_idx < places_.size(); ++scope_idx) {
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
    CreateOpHandleIOs(result, op, p, scope_idx);
  }
}

void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
                                           const OpDesc &op) const {
  auto &p = places_[0];
  auto *s = local_scopes_[0];
  // FIXME(wuyi): send op always copy from GPU 0
  result->ops_.emplace_back(new SendOpHandle(op, s, p));
  // Create inputs for output on original place and no ssa output
  // is created for send op.
  CreateOpHandleIOs(result, op, p, 0);
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
Y
Yu Yang 已提交
227 228 229
}  // namespace details
}  // namespace framework
}  // namespace paddle