jit_kernel.cc 3.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <iostream>
T
tensor-tang 已提交
17 18 19 20 21 22 23
#include <string>

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

T
tensor-tang 已提交
24 25
namespace jit = platform::jit;

T
tensor-tang 已提交
26 27 28 29
KernelPool& KernelPool::Instance() {
  static KernelPool g_jit_kernels;
  return g_jit_kernels;
}
T
tensor-tang 已提交
30

T
tensor-tang 已提交
31
const std::shared_ptr<Kernel> KernelPool::Get(const std::string& key) const {
T
tensor-tang 已提交
32
  if (kers_.find(key) == kers_.end()) {
T
tensor-tang 已提交
33
    return nullptr;
T
tensor-tang 已提交
34
  }
T
tensor-tang 已提交
35
  return kers_.at(key);
T
tensor-tang 已提交
36 37
}

T
tensor-tang 已提交
38 39 40 41 42 43 44 45 46 47 48
#define DEFINE_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key)        \
  template <>                                                              \
  const std::shared_ptr<ker_class<ker_dtype>>                              \
  KernelPool::Get<ker_class<ker_dtype>>(int d) {                           \
    std::string key = #ker_key #dtype_key + std::to_string(d);             \
    if (kers_.find(key) == kers_.end()) {                                  \
      auto p = std::make_shared<ker_class<ker_dtype>>(d);                  \
      kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});           \
      return p;                                                            \
    }                                                                      \
    return std::dynamic_pointer_cast<ker_class<ker_dtype>>(kers_.at(key)); \
T
tensor-tang 已提交
49
  }
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59

#define REGISTER_BLAS_JITKERNEL(ker_key, ker_class) \
  DEFINE_WITH_DTYPE(ker_key, ker_class, float, f);  \
  DEFINE_WITH_DTYPE(ker_key, ker_class, double, d)

REGISTER_BLAS_JITKERNEL(vmul, VMulKernel);
REGISTER_BLAS_JITKERNEL(vadd, VAddKernel);

#undef REGISTER_BLAS_JITKERNEL
#undef DEFINE_WITH_DTYPE
T
tensor-tang 已提交
60 61 62 63 64 65 66

template <>
const std::shared_ptr<LSTMKernel<float>>
KernelPool::Get<LSTMKernel<float>, int, const std::string&, const std::string&,
                const std::string&>(int d, const std::string& act_gate,
                                    const std::string& act_cand,
                                    const std::string& act_cell) {
T
tensor-tang 已提交
67 68
  std::string key =
      "lstmf" + std::to_string(d) + act_gate + act_cand + act_cell;
T
tensor-tang 已提交
69 70 71 72 73 74 75
  if (kers_.find(key) == kers_.end()) {
    auto p =
        std::make_shared<LSTMKernel<float>>(d, act_gate, act_cand, act_cell);
    kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
    return p;
  }
  return std::dynamic_pointer_cast<LSTMKernel<float>>(kers_.at(key));
T
tensor-tang 已提交
76 77 78 79 80 81
}

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle