test_parallel_op.py 5.8 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yang Yang 已提交
14
import unittest
15

Y
Yang Yang 已提交
16
import paddle.v2.fluid as fluid
Y
Yang Yu 已提交
17 18 19 20
import numpy


class BaseParallelForTest(unittest.TestCase):
Y
Yang Yu 已提交
21 22 23 24 25 26 27 28 29
    def run_test(self, callback, feed, fetch):
        """
        Run the unittest for parallel.for
        Args:
            callback(callable): A callable function returns a generator. There 
                are two yields in the generator function. The first yield 
                returns the data layers, and the second yield returns the loss. 
                The modified data variables will be sent back during the first 
                yield.
30

Y
Yang Yu 已提交
31 32 33 34 35
            feed(dict): The executor feeding dictionary.
            fetch(list|basestr): The fetch name lists. 

        Returns:
            None
36

Y
Yang Yu 已提交
37 38 39 40 41
        Raises:
            AssertionError when the computation of cpu, parallel.for in cpu, 
                gpu, parallel.for in gpu are different.

        """
Y
Yang Yu 已提交
42
        cpu = fluid.CPUPlace()
Y
Yang Yu 已提交
43
        result_cpu = self._run_test_impl_(
Y
Yang Yu 已提交
44 45 46 47 48
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=False)
Y
Yang Yu 已提交
49
        result_cpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
50 51 52 53 54 55 56
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=True)
        if fluid.core.is_compile_gpu():
            gpu = fluid.CUDAPlace(0)
Y
Yang Yu 已提交
57
            result_gpu = self._run_test_impl_(
Y
Yang Yu 已提交
58 59 60 61 62
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
                use_parallel=False)
Y
Yang Yu 已提交
63
            result_gpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
64 65 66 67 68 69 70 71 72
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
                use_parallel=True)
            self._assert_same_(fetch, result_cpu, result_cpu_parallel,
                               result_gpu, result_gpu_parallel)
        else:
            self._assert_same_(fetch, result_cpu, result_cpu_parallel)
Y
Yang Yu 已提交
73

Y
Yang Yu 已提交
74 75 76 77 78 79 80 81 82 83 84
    def _run_test_impl_(self, callback, feed, fetch, place, use_parallel=False):
        """
        Run a single test, returns the fetch values
        Args:
            place(Place): the computation place. 
            use_parallel(bool): Whether use parallel.for or not. 

        Returns:
            Fetched numpy arrays.

        """
Y
Yang Yu 已提交
85 86
        if isinstance(fetch, basestring):
            fetch = [fetch]
Y
Yang Yu 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        main = fluid.Program()
        startup = fluid.Program()
        # Fix seed
        main.random_seed = 10
        startup.random_seed = 10

        with fluid.program_guard(main, startup):
            generator = callback()
            # Automatically insert parallel do if use_parallel = True
            if use_parallel:
                places = fluid.layers.get_places()
                pd = fluid.layers.ParallelDo(places)
                data = next(generator)

                if isinstance(data, fluid.Variable):
                    data = [data]
Y
Yang Yu 已提交
103

Y
Yang Yu 已提交
104 105 106 107
                with pd.do():
                    ins = map(pd.read_input, data)
                    if len(ins) == 1:
                        ins = ins[0]
Y
Yang Yu 已提交
108
                    loss = generator.send(ins)  # patch input
Y
Yang Yu 已提交
109 110 111 112 113
                    pd.write_output(loss)

                loss = pd()
            else:
                data = next(generator)
Y
Yang Yu 已提交
114 115
                loss = generator.send(data)
            self.assertIsNotNone(loss)
Y
Yang Yu 已提交
116 117 118 119 120 121 122
            avg_loss = fluid.layers.mean(x=loss)
            fluid.backward.append_backward(loss=avg_loss)

        exe = fluid.Executor(place)
        exe.run(startup)
        return exe.run(main, feed=feed, fetch_list=fetch)

Y
Yang Yu 已提交
123
    def _assert_same_(self, fetch, *args):
Y
Yang Yu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
        """
        Assert the return values of `run_test` are same.
        Args:
            fetch: Fetch list. Used for print error message
            *args: The fetch result lists of each situations.

        Returns:
            None
            
        Raises:
            AssertionError

        """

Y
Yang Yu 已提交
138 139 140 141 142 143 144 145 146 147 148
        def _impl_(a, b, fetch_id, item_id):
            item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
            flag = numpy.allclose(a, b, rtol=0.1)
            self.assertTrue(flag, "The {0} are different in {1}".format(
                fetch[fetch_id], item_str[item_id]))

        for i, items in enumerate(zip(*args)):
            self.assertGreater(len(items), 0)
            for j in range(1, len(items)):
                _impl_(items[0], items[j], fetch_id=i, item_id=j)

Y
Yang Yu 已提交
149 150

class ParallelOpTest(BaseParallelForTest):
Y
Yu Yang 已提交
151 152 153 154 155 156 157
    @staticmethod
    def __network__():
        x = fluid.layers.data(shape=[784], dtype='float32', name='img')
        x = yield x
        hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
        loss = fluid.layers.mean(x=hidden)
        yield loss
Y
Yang Yu 已提交
158

Y
Yu Yang 已提交
159
    def test_simple_fc(self):
Y
Yang Yu 已提交
160
        self.run_test(
Y
Yu Yang 已提交
161
            callback=ParallelOpTest.__network__,
Y
Yang Yu 已提交
162
            feed={
Y
Yu Yang 已提交
163
                'img': numpy.random.random(size=(51, 784)).astype('float32')
Y
Yang Yu 已提交
164
            },
Y
Yang Yang 已提交
165
            fetch=['fc1.w@GRAD'])
Y
Yang Yang 已提交
166

Y
Yu Yang 已提交
167 168 169 170
    def test_fc_with_tiny_data(self):
        self.run_test(
            callback=ParallelOpTest.__network__,
            feed={'img': numpy.random.random(size=(1, 784)).astype('float32')},
Y
Yang Yang 已提交
171
            fetch=['fc1.w@GRAD'])
Y
Yu Yang 已提交
172

Y
Yang Yang 已提交
173 174 175

if __name__ == '__main__':
    unittest.main()