box_coder_op.h 9.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
13
#include <string>
14
#include <vector>
Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gaoyuan 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

32
template <typename DeviceContext, typename T>
G
gaoyuan 已提交
33 34
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
35 36 37
  void EncodeCenterSize(const framework::Tensor* target_box,
                        const framework::Tensor* prior_box,
                        const framework::Tensor* prior_box_var,
38 39
                        const bool normalized,
                        const std::vector<float> variance, T* output) const {
40 41 42 43 44 45 46
    int64_t row = target_box->dims()[0];
    int64_t col = prior_box->dims()[0];
    int64_t len = prior_box->dims()[1];
    auto* target_box_data = target_box->data<T>();
    auto* prior_box_data = prior_box->data<T>();
    const T* prior_box_var_data = nullptr;
    if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();
G
gaoyuan 已提交
47

L
luotao1 已提交
48 49 50
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
G
gaoyuan 已提交
51 52
    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
53 54 55 56 57
        T prior_box_width = prior_box_data[j * len + 2] -
                            prior_box_data[j * len] + (normalized == false);
        T prior_box_height = prior_box_data[j * len + 3] -
                             prior_box_data[j * len + 1] +
                             (normalized == false);
J
jerrywgz 已提交
58
        T prior_box_center_x = prior_box_data[j * len] + prior_box_width / 2;
G
gaoyuan 已提交
59
        T prior_box_center_y =
J
jerrywgz 已提交
60
            prior_box_data[j * len + 1] + prior_box_height / 2;
G
gaoyuan 已提交
61 62

        T target_box_center_x =
G
gaoyuan 已提交
63
            (target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
G
gaoyuan 已提交
64
        T target_box_center_y =
G
gaoyuan 已提交
65
            (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
66 67 68 69 70
        T target_box_width = target_box_data[i * len + 2] -
                             target_box_data[i * len] + (normalized == false);
        T target_box_height = target_box_data[i * len + 3] -
                              target_box_data[i * len + 1] +
                              (normalized == false);
G
gaoyuan 已提交
71

G
gaoyuan 已提交
72
        size_t offset = i * col * len + j * len;
73 74 75 76
        output[offset] =
            (target_box_center_x - prior_box_center_x) / prior_box_width;
        output[offset + 1] =
            (target_box_center_y - prior_box_center_y) / prior_box_height;
G
gaoyuan 已提交
77
        output[offset + 2] =
78
            std::log(std::fabs(target_box_width / prior_box_width));
G
gaoyuan 已提交
79
        output[offset + 3] =
80 81
            std::log(std::fabs(target_box_height / prior_box_height));
        if (prior_box_var) {
J
jerrywgz 已提交
82 83 84 85 86 87 88 89
          int prior_var_offset = 0;
          if (prior_box_var->dims().size() == 2) {
            prior_var_offset = j * len;
          }
          output[offset] /= prior_box_var_data[prior_var_offset];
          output[offset + 1] /= prior_box_var_data[prior_var_offset + 1];
          output[offset + 2] /= prior_box_var_data[prior_var_offset + 2];
          output[offset + 3] /= prior_box_var_data[prior_var_offset + 3];
90 91 92 93
        } else if (!(variance.empty())) {
          for (int k = 0; k < 4; ++k) {
            output[offset + k] /= static_cast<T>(variance[k]);
          }
94
        }
G
gaoyuan 已提交
95 96 97
      }
    }
  }
98 99 100
  void DecodeCenterSize(const framework::Tensor* target_box,
                        const framework::Tensor* prior_box,
                        const framework::Tensor* prior_box_var,
J
jerrywgz 已提交
101
                        const bool normalized, const int axis,
102
                        const std::vector<float> variance, T* output) const {
103
    int64_t row = target_box->dims()[0];
J
jerrywgz 已提交
104 105
    int64_t col = target_box->dims()[1];
    int64_t len = target_box->dims()[2];
G
gaoyuan 已提交
106

107 108 109 110
    auto* target_box_data = target_box->data<T>();
    auto* prior_box_data = prior_box->data<T>();
    const T* prior_box_var_data = nullptr;
    if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();
J
jerrywgz 已提交
111
    int prior_box_offset = 0;
L
luotao1 已提交
112 113 114
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
G
gaoyuan 已提交
115 116
    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
Y
Yuan Gao 已提交
117
        size_t offset = i * col * len + j * len;
J
jerrywgz 已提交
118 119 120 121 122 123 124 125 126 127
        if (axis == 0) {
          prior_box_offset = j * len;
        } else if (axis == 1) {
          prior_box_offset = i * len;
        }
        T prior_box_width = prior_box_data[prior_box_offset + 2] -
                            prior_box_data[prior_box_offset] +
                            (normalized == false);
        T prior_box_height = prior_box_data[prior_box_offset + 3] -
                             prior_box_data[prior_box_offset + 1] +
128
                             (normalized == false);
G
gaoyuan 已提交
129
        T prior_box_center_x =
J
jerrywgz 已提交
130
            prior_box_data[prior_box_offset] + prior_box_width / 2;
G
gaoyuan 已提交
131
        T prior_box_center_y =
J
jerrywgz 已提交
132
            prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
G
gaoyuan 已提交
133

134 135
        T target_box_center_x = 0, target_box_center_y = 0;
        T target_box_width = 0, target_box_height = 0;
J
jerrywgz 已提交
136 137
        T box_var_x = T(1), box_var_y = T(1);
        T box_var_w = T(1), box_var_h = T(1);
138
        if (prior_box_var) {
J
jerrywgz 已提交
139 140 141 142 143 144 145
          int prior_var_offset = 0;
          if (prior_box_var->dims().size() == 2) {
            if (axis == 0)
              prior_var_offset = j * len;
            else if (axis == 1)
              prior_var_offset = i * len;
          }
J
jerrywgz 已提交
146 147 148 149
          box_var_x = prior_box_var_data[prior_var_offset];
          box_var_y = prior_box_var_data[prior_var_offset + 1];
          box_var_w = prior_box_var_data[prior_var_offset + 2];
          box_var_h = prior_box_var_data[prior_var_offset + 3];
150
        } else if (!(variance.empty())) {
J
jerrywgz 已提交
151 152 153 154
          box_var_x = static_cast<T>(variance[0]);
          box_var_y = static_cast<T>(variance[1]);
          box_var_w = static_cast<T>(variance[2]);
          box_var_h = static_cast<T>(variance[3]);
155
        }
J
jerrywgz 已提交
156 157 158 159 160 161 162 163 164 165
        target_box_center_x =
            box_var_x * target_box_data[offset] * prior_box_width +
            prior_box_center_x;
        target_box_center_y =
            box_var_y * target_box_data[offset + 1] * prior_box_height +
            prior_box_center_y;
        target_box_width =
            std::exp(box_var_w * target_box_data[offset + 2]) * prior_box_width;
        target_box_height = std::exp(box_var_h * target_box_data[offset + 3]) *
                            prior_box_height;
G
gaoyuan 已提交
166 167 168

        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
169 170 171 172
        output[offset + 2] =
            target_box_center_x + target_box_width / 2 - (normalized == false);
        output[offset + 3] =
            target_box_center_y + target_box_height / 2 - (normalized == false);
G
gaoyuan 已提交
173 174 175 176 177 178 179 180
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
181
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
182
    std::vector<float> variance = context.Attr<std::vector<float>>("variance");
J
jerrywgz 已提交
183
    const int axis = context.Attr<int>("axis");
G
gaoyuan 已提交
184 185 186 187
    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
188 189 190 191 192 193 194 195 196
    if (prior_box_var) {
      PADDLE_ENFORCE(variance.empty(),
                     "Input 'PriorBoxVar' and attribute 'variance' should not"
                     "be used at the same time.");
    }
    if (!(variance.empty())) {
      PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
                     "Size of attribute 'variance' should be 4");
    }
J
jerrywgz 已提交
197 198 199
    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    bool normalized = context.Attr<bool>("box_normalized");

G
gaoyuan 已提交
200 201
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
J
jerrywgz 已提交
202 203 204
    if (code_type == BoxCodeType::kDecodeCenterSize) {
      col = target_box->dims()[1];
    }
G
gaoyuan 已提交
205
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
206

G
gaoyuan 已提交
207
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
208 209 210

    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
211
      EncodeCenterSize(target_box, prior_box, prior_box_var, normalized,
212
                       variance, output);
G
gaoyuan 已提交
213
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
J
jerrywgz 已提交
214
      DecodeCenterSize(target_box, prior_box, prior_box_var, normalized, axis,
215
                       variance, output);
G
gaoyuan 已提交
216 217 218 219 220 221
    }
  }
};

}  // namespace operators
}  // namespace paddle