test_unsqueeze_op.py 7.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19 20
import paddle
import paddle.fluid as fluid
21
from op_test import OpTest
22
paddle.enable_static()
23 24 25


# Correct: General.
26
class TestUnsqueezeOp(OpTest):
27
    def setUp(self):
28
        self.init_test_case()
29
        self.op_type = "unsqueeze"
30
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
C
chenweihang 已提交
31
        self.init_attrs()
32
        self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
33 34

    def test_check_output(self):
35
        self.check_output()
36 37 38 39

    def test_check_grad(self):
        self.check_grad(["X"], "Out")

40
    def init_test_case(self):
Z
zhupengyang 已提交
41
        self.ori_shape = (3, 40)
42
        self.axes = (1, 2)
Z
zhupengyang 已提交
43
        self.new_shape = (3, 1, 1, 40)
44

C
chenweihang 已提交
45
    def init_attrs(self):
46
        self.attrs = {"axes": self.axes}
C
chenweihang 已提交
47

48

49 50 51
# Correct: Single input index.
class TestUnsqueezeOp1(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
52
        self.ori_shape = (20, 5)
53
        self.axes = (-1, )
Z
zhupengyang 已提交
54
        self.new_shape = (20, 5, 1)
55 56 57


# Correct: Mixed input axis.
58 59
class TestUnsqueezeOp2(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
60
        self.ori_shape = (20, 5)
61
        self.axes = (0, -1)
Z
zhupengyang 已提交
62
        self.new_shape = (1, 20, 5, 1)
63 64


65
# Correct: There is duplicated axis.
66 67
class TestUnsqueezeOp3(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
68
        self.ori_shape = (10, 2, 5)
69
        self.axes = (0, 3, 3)
Z
zhupengyang 已提交
70
        self.new_shape = (1, 10, 2, 1, 1, 5)
71 72


73 74 75
# Correct: Reversed axes.
class TestUnsqueezeOp4(TestUnsqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
76
        self.ori_shape = (10, 2, 5)
77
        self.axes = (3, 1, 1)
Z
zhupengyang 已提交
78
        self.new_shape = (10, 1, 1, 2, 5, 1)
79 80


81 82 83 84
class API_TestUnsqueeze(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[-1, 10], dtype='float64')
85
            result_squeeze = paddle.unsqueeze(data1, axis=[1])
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input = np.squeeze(input1, axis=1)
            result, = exe.run(feed={"data1": input},
                              fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result))


class TestUnsqueezeOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axes_type():
                x6 = fluid.layers.data(
                    shape=[-1, 10], dtype='float16', name='x3')
102
                paddle.unsqueeze(x6, axis=3.2)
103 104 105 106 107 108 109 110 111

            self.assertRaises(TypeError, test_axes_type)


class API_TestUnsqueeze2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.data('data1', shape=[-1, 10], dtype='float64')
            data2 = fluid.data('data2', shape=[1], dtype='int32')
112
            result_squeeze = paddle.unsqueeze(data1, axis=data2)
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([5, 1, 10]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1, axis=1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
            self.assertTrue(np.allclose(input1, result1))


class API_TestUnsqueeze3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.data('data1', shape=[-1, 10], dtype='float64')
            data2 = fluid.data('data2', shape=[1], dtype='int32')
129
            result_squeeze = paddle.unsqueeze(data1, axis=[data2, 3])
130 131 132 133 134 135 136 137
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([5, 1, 10, 1]).astype('float64')
            input2 = np.array([1]).astype('int32')
            input = np.squeeze(input1)
            result1, = exe.run(feed={"data1": input,
                                     "data2": input2},
                               fetch_list=[result_squeeze])
L
Leo Chen 已提交
138 139
            self.assertTrue(np.array_equal(input1, result1))
            self.assertEqual(input1.shape, result1.shape)
140 141 142 143 144 145


class API_TestDyUnsqueeze(unittest.TestCase):
    def test_out(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([5, 1, 10]).astype("int32")
L
Leo Chen 已提交
146
            input1 = np.expand_dims(input_1, axis=1)
147
            input = fluid.dygraph.to_variable(input_1)
148
            output = paddle.unsqueeze(input, axis=[1])
149
            out_np = output.numpy()
L
Leo Chen 已提交
150 151
            self.assertTrue(np.array_equal(input1, out_np))
            self.assertEqual(input1.shape, out_np.shape)
152 153 154 155 156


class API_TestDyUnsqueeze2(unittest.TestCase):
    def test_out(self):
        with fluid.dygraph.guard():
L
Leo Chen 已提交
157 158 159
            input1 = np.random.random([5, 10]).astype("int32")
            out1 = np.expand_dims(input1, axis=1)
            input = fluid.dygraph.to_variable(input1)
160
            output = paddle.unsqueeze(input, axis=1)
161
            out_np = output.numpy()
L
Leo Chen 已提交
162 163 164 165 166 167 168 169 170
            self.assertTrue(np.array_equal(out1, out_np))
            self.assertEqual(out1.shape, out_np.shape)


class API_TestDyUnsqueezeAxisTensor(unittest.TestCase):
    def test_out(self):
        with fluid.dygraph.guard():
            input1 = np.random.random([5, 10]).astype("int32")
            out1 = np.expand_dims(input1, axis=1)
171
            out1 = np.expand_dims(out1, axis=2)
L
Leo Chen 已提交
172
            input = fluid.dygraph.to_variable(input1)
173
            output = paddle.unsqueeze(input, axis=paddle.to_tensor([1, 2]))
L
Leo Chen 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            out_np = output.numpy()
            self.assertTrue(np.array_equal(out1, out_np))
            self.assertEqual(out1.shape, out_np.shape)


class API_TestDyUnsqueezeAxisTensorList(unittest.TestCase):
    def test_out(self):
        with fluid.dygraph.guard():
            input1 = np.random.random([5, 10]).astype("int32")
            # Actually, expand_dims supports tuple since version 1.18.0
            out1 = np.expand_dims(input1, axis=1)
            out1 = np.expand_dims(out1, axis=2)
            input = fluid.dygraph.to_variable(input1)
            output = paddle.unsqueeze(
                fluid.dygraph.to_variable(input1),
                axis=[paddle.to_tensor([1]), paddle.to_tensor([2])])
            out_np = output.numpy()
            self.assertTrue(np.array_equal(out1, out_np))
            self.assertEqual(out1.shape, out_np.shape)
193 194


195 196
if __name__ == "__main__":
    unittest.main()