backward.py 2.2 KB
Newer Older
Q
Qiao Longfei 已提交
1
from paddle.v2.fluid import framework as framework
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

__all__ = ['append_backward_ops']


def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
    """
    Create and add gradient Operators in BlockDesc to compute
    gradients of `loss` for parameters in parameter_list

    :param loss: an variable generated by cost function.
    :type loss: Variable
    :param no_grad_set: variable that should not create gradient
    :type no_grad_set: set
    :param parameter_list: parameters that need to compute gradient and 
    update to optimize the lost.
    :type: list
    :return: list of (parameters, gradients) pair.
    :rtype: list[Variable]
    """
    assert isinstance(loss, framework.Variable)
Y
Yu Yang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35

    if no_grad_set is None:
        program = loss.block.program
        assert isinstance(program, framework.Program)
        no_grad_set = list()
        for block in program.blocks:
            assert isinstance(block, framework.Block)
            for var in block.vars.itervalues():
                assert isinstance(var, framework.Variable)
                if var.stop_gradient:
                    no_grad_set.append(var.name)
        no_grad_set = set(no_grad_set)

    param_grad_map = loss.block.program.append_backward(loss, no_grad_set)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    if parameter_list is not None:
        parameters = parameter_list
    else:
        params = loss.block.program.global_block().all_parameters()
        parameters = [param.name for param in params]
    params_and_grads = []
    for param in parameters:
        if param not in param_grad_map:
            raise ValueError("param %s is not in map" % param)
        grad_info = param_grad_map[param]
        grad_block = loss.block.program.block(grad_info[1])
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
        param_var = loss.block.program.global_block().var(param)
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads