math_function.cu 11.3 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Fix CI  
Yu Yang 已提交
15
#include "paddle/framework/data_type.h"
Q
qijun 已提交
16
#include "paddle/operators/math/math_function.h"
Q
qijun 已提交
17

Q
qijun 已提交
18 19 20 21 22
namespace paddle {
namespace operators {
namespace math {

template <>
23 24
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
25 26 27
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
28 29
                                     const float* B, const float beta,
                                     float* C) {
Q
qijun 已提交
30 31
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
32 33
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
34
  cublasOperation_t cuTransA =
Q
qijun 已提交
35
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
36
  cublasOperation_t cuTransB =
Q
qijun 已提交
37
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
38

Q
qijun 已提交
39
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
40 41
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
42
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
43 44 45
}

template <>
46 47
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
48 49 50 51
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
52
                                      double* C) {
Q
qijun 已提交
53 54
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
55 56
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
57
  cublasOperation_t cuTransA =
Q
qijun 已提交
58
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
59
  cublasOperation_t cuTransB =
Q
qijun 已提交
60
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
61
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
62 63
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
64
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
65 66
}

G
guosheng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <>
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const bool transA, const bool transB,
                                     const int M, const int N, const int K,
                                     const float alpha, const float* A,
                                     const int lda, const float* B,
                                     const int ldb, const float beta, float* C,
                                     const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

template <>
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const bool transA, const bool transB,
                                      const int M, const int N, const int K,
                                      const double alpha, const double* A,
                                      const int lda, const double* B,
                                      const int ldb, const double beta,
                                      double* C, const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

Q
qijun 已提交
103
template <>
104 105 106 107
void matmul<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
108 109 110 111 112 113 114 115 116
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
117
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
118

Q
qijun 已提交
119 120 121
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
122

Q
qijun 已提交
123 124
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
125

Q
qijun 已提交
126
  gemm<platform::GPUPlace, float>(
127 128
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
129 130 131
}

template <>
132 133 134 135
void matmul<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
136 137 138 139 140 141 142 143 144
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
145
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
146

Q
qijun 已提交
147 148 149 150 151 152
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
153

Q
qijun 已提交
154
  gemm<platform::GPUPlace, double>(
155 156
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
157
}
Q
qijun 已提交
158

M
Markus Kliegl 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
template <>
void batched_gemm<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA,
      &beta, C, ldc, strideC, batchCount));
}

template <>
void batched_gemm<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA,
      &beta, C, ldc, strideC, batchCount));
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
template <>
void gemv<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const bool trans_a, const int M,
                                     const int N, const float alpha,
                                     const float* A, const float* B,
                                     const float beta, float* C) {
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;

  PADDLE_ENFORCE(platform::dynload::cublasSgemv(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}

template <>
void gemv<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const bool trans_a, const int M,
                                      const int N, const double alpha,
                                      const double* A, const double* B,
                                      const double beta, double* C) {
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;
  PADDLE_ENFORCE(platform::dynload::cublasDgemv(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}

234
template struct SetConstant<platform::GPUPlace, float>;
Q
qijun 已提交
235

236 237
struct TensorSetConstantGPU {
  TensorSetConstantGPU(const platform::DeviceContext& context,
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
                    framework::Tensor* tensor, float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void operator()() const {
    SetConstant<platform::GPUPlace, T> functor;
    functor(context_, tensor_, static_cast<T>(value_));
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<platform::GPUPlace>(
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
257
                           TensorSetConstantGPU(context, tensor, value));
258 259
}

Q
qijun 已提交
260 261 262
}  // namespace math
}  // namespace operators
}  // namespace paddle