fleet_base.py 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
97
            fleet.init(strategy=strategy)
98

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
180
                fleet.init(strategy=strategy)
181

182
        """
S
ShenLiang 已提交
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
199
                self._is_collective = role_maker._is_collective
200 201 202 203
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
204
        self._role_maker._generate_role()
205

206 207 208
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

209
        self.strategy_compiler = StrategyCompiler()
210 211 212 213 214 215 216 217 218

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

219
        if paddle.fluid.framework.in_dygraph_mode():
220 221
            if self.worker_num() == 1:
                return
222 223 224 225
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
226 227 228 229 230 231 232 233 234
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
235
                paddle.distributed.init_parallel_env()
236 237 238 239 240 241 242 243

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
244

245 246 247 248 249 250 251 252
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

253
        """
254
        return self._role_maker._is_first_worker()
255 256 257 258 259 260 261

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
262 263 264 265

        Examples:

            .. code-block:: python
1
123malin 已提交
266

267 268 269 270
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

271
        """
272
        return self._role_maker._worker_index()
273 274 275 276 277 278 279

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
280

281
        Examples:
1
123malin 已提交
282

283 284 285 286 287 288
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

289
        """
290
        return self._role_maker._worker_num()
291 292 293 294 295 296 297 298

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
299 300

        Examples:
1
123malin 已提交
301

302 303 304 305 306 307
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

308
        """
309
        return self._role_maker._is_worker()
310 311 312

    def worker_endpoints(self, to_string=False):
        """
313
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
314 315 316

        Returns:
            list/string: server endpoints
317 318

        Examples:
1
123malin 已提交
319

320 321 322 323 324 325
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

326 327
        """
        if to_string:
328
            return ",".join(self._role_maker._get_trainer_endpoints())
329
        else:
330
            return self._role_maker._get_trainer_endpoints()
331 332 333 334 335 336 337

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
338 339

        Examples:
1
123malin 已提交
340

341
            .. code-block:: python
1
123malin 已提交
342 343 344 345

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
346
        """
347
        return len(self._role_maker._get_pserver_endpoints())
348 349 350 351 352 353 354

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
355 356

        Examples:
1
123malin 已提交
357

358 359 360 361 362 363
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

364
        """
365
        return self._role_maker._server_index()
366 367 368 369 370 371 372

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
373 374

        Examples:
1
123malin 已提交
375

376 377 378 379 380 381
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

382
        """
383

384
        if to_string:
385
            return ",".join(self._role_maker._get_pserver_endpoints())
386
        else:
387
            return self._role_maker._get_pserver_endpoints()
388 389 390 391 392 393 394 395

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
396 397 398 399

        Examples:

            .. code-block:: python
1
123malin 已提交
400

401 402 403 404
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

405
        """
406
        return self._role_maker._is_server(
407
        ) or self._role_maker._is_heter_worker()
408 409 410

    def barrier_worker(self):
        """
411 412 413 414
        barrier all workers

        Returns:
            None
415
        """
416
        self._role_maker._barrier("worker")
417

418
    @is_non_distributed_check
419
    @inited_runtime_handler
420 421
    def init_worker(self):
        """
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

440 441 442
        """
        self._runtime_handle._init_worker()

443
    @is_non_distributed_check
444
    @inited_runtime_handler
445
    def init_server(self, *args, **kwargs):
446
        """
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

466
        """
467
        self._runtime_handle._init_server(*args, **kwargs)
468

469
    @is_non_distributed_check
470
    @inited_runtime_handler
471 472
    def run_server(self):
        """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

491 492 493
        """
        self._runtime_handle._run_server()

494
    @is_non_distributed_check
495
    @inited_runtime_handler
496 497
    def stop_worker(self):
        """
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

515 516 517
        """
        self._runtime_handle._stop_worker()

518 519 520 521 522 523
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
524 525
                             export_for_deployment=True,
                             mode=0):
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

546 547
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
548
            export_for_deployment, mode)
549

550
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
551 552
        """

1
123malin 已提交
553
        saves all persistable tensors from :code:`main_program` to
554 555
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
556 557
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
558 559 560
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
561
            executor(Executor): The executor to run for saving persistable tensors.
562 563 564 565 566
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
567
            main_program(Program, optional): The program whose persistbale tensors will
568 569 570 571 572 573 574 575 576 577
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
578 579
                import paddle
                paddle.enable_static()
580 581 582 583 584 585 586
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
587 588
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
589 590 591

        """

592 593
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
594

595 596 597
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

598
    def distributed_optimizer(self, optimizer, strategy=None):
599
        """
600 601 602 603 604 605 606
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
607 608 609 610 611
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
612

613
        Returns:
614
            Fleet: instance of fleet.
615 616

        Examples:
617

618
            .. code-block:: python
619

1
123malin 已提交
620
                import paddle
621
                import paddle.distributed.fleet as fleet
1
123malin 已提交
622
                fleet.init(is_collective=True)
623 624 625 626
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

627 628
        """
        self.user_defined_optimizer = optimizer
629

630
        if strategy is not None:
T
tangwei12 已提交
631 632 633 634 635 636 637
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
638
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
639 640

        self._context = {}
S
ShenLiang 已提交
641 642 643 644 645

        # TODO(shenliang03): This is a temporary solution to support amp. In the case of a dynamic graph, 
        # the optimizer is returned directly. This problem will be fixed in the future.
        if paddle.fluid.framework.in_dygraph_mode():
            return optimizer
646 647
        return self

648
    @dygraph_only
649
    def distributed_model(self, model):
650
        """
651 652 653 654 655 656 657
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
658 659

        Examples:
660

661 662
            .. code-block:: python

663 664 665 666 667 668 669 670 671
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
672

673 674
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
675

1
123malin 已提交
676
                # 1. initialize fleet environment
677 678
                fleet.init(is_collective=True)

1
123malin 已提交
679
                # 2. create layer & optimizer
680 681 682 683 684
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
685
                # 3. get data_parallel model using fleet
686 687 688
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
689
                # 4. run layer
690 691 692 693 694 695 696 697 698 699 700 701
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

702

703 704
        """
        assert model is not None
705 706
        self.model = paddle.DataParallel(
            model,
707 708 709
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
710 711 712 713 714 715
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
716
        (Only work in dygraph mode)
717 718 719 720 721 722 723

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

724 725 726 727 728
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
729

730
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
731
                a = paddle.to_tensor(value)
732

733 734
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
735

736 737 738
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
739 740 741 742 743 744 745 746
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
747
        (Only work in dygraph mode)
748 749 750 751

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

752 753
        Returns:
            None
754 755 756 757

        Examples:
            .. code-block:: python

758 759 760
                import numpy as np
                import paddle
                from paddle.distributed import fleet
761

762 763 764
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
765
                a = paddle.to_tensor(value)
766

767 768
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
769

770 771 772
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
773 774 775
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
776 777 778 779 780 781 782 783
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
784
        (Only work in dygraph mode)
785

786 787 788
        Args:
            value (float|Tensor): the value of learning rate

789 790
        Returns: 
            None 
791 792 793 794

        Examples:
            .. code-block:: python

795 796 797
                import numpy as np
                import paddle
                from paddle.distributed import fleet
798

799
                fleet.init(is_collective=True)
800

801
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
802
                a = paddle.to_tensor(value)
803

804 805
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
821 822 823 824 825 826 827 828
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
829
        (Only work in dygraph mode)
830 831 832 833 834

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
835

836 837
            .. code-block:: python

838 839 840 841 842
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
843

844
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
845
                a = paddle.to_tensor(value)
846

847 848
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
849

850 851
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
852

853 854
                lr = adam.get_lr()
                print(lr) # 0.01
855 856 857 858 859 860 861 862
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
863
        (Only work in dygraph mode)
864

865 866
        Returns:
            None
867 868

        Examples:
1
123malin 已提交
869

870 871
            .. code-block:: python

872 873 874
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
875

876 877 878 879 880
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
881

882 883
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
884

1
123malin 已提交
885
                # 1. initialize fleet environment
886 887
                fleet.init(is_collective=True)

1
123malin 已提交
888
                # 2. create layer & optimizer
889 890 891 892 893
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
894
                # 3. get data_parallel model using fleet
895 896 897
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
898
                # 4. run layer
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
919 920
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
921

922 923
        Returns: 
            None
924 925

        Examples:
1
123malin 已提交
926

927 928
            .. code-block:: python

929 930 931
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
932

933 934 935 936 937
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
938

939 940
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
941

1
123malin 已提交
942
                # 1. initialize fleet environment
943 944
                fleet.init(is_collective=True)

1
123malin 已提交
945
                # 2. create layer & optimizer
946 947 948 949 950
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
951
                # 3. get data_parallel model using fleet
952 953 954
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
955
                # 4. run layer
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

H
huangxu96 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1032

H
huangxu96 已提交
1033
        # imitate target optimizer retrieval
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."

        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1048

D
Dong Daxiang 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1076 1077 1078 1079 1080 1081 1082 1083 1084
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1085
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1086 1087 1088
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1089
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1090 1091
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1092
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1093 1094 1095 1096
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1097
            by minimize and a list of (param, grad) tensor pairs, param is
1098
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1099 1100
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1101 1102 1103
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1104

1105
            .. code-block:: python
1106

1107
                import paddle
1
123malin 已提交
1108
                paddle.enable_static()
1109
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1121

1
123malin 已提交
1122
                fleet.init(is_collective=True)
1123 1124 1125 1126
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1127

1128
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1129 1130

        """
D
Dong Daxiang 已提交
1131 1132 1133
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1134 1135 1136
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1137
            self._context = context
1138 1139
            return target_opt.minimize(loss)

1140 1141
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1142 1143
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1144 1145
        if startup_program == None:
            self.origin_startup_program = \
1146 1147
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1148 1149 1150
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1151

1152 1153
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1154 1155 1156 1157 1158

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1159

D
Dong Daxiang 已提交
1160 1161 1162
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1163 1164 1165 1166 1167 1168

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1169
        if copy_user_defined_strategy._is_strict_auto():
1170 1171
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1172
                opt._enable_strategy(copy_user_defined_strategy, context)
1173

1174 1175
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1176
        can_not_apply_optimizer_list = []
1177 1178 1179 1180
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1181
                                copy_user_defined_strategy)
1182 1183
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1184
            elif opt._can_apply() and opt._is_graph_out():
1185
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1186 1187
            else:
                can_not_apply_optimizer_list.append(opt)
1188
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1189
        meta_optimizer, graph_optimizer = \
1190 1191
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1192
                copy_user_defined_strategy, valid_optimizer_list,
1193
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1194

D
Dong Daxiang 已提交
1195
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1196 1197 1198
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1199

1200 1201 1202 1203 1204 1205
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1206
        self._context = context
1207

D
Dong Daxiang 已提交
1208
        self.valid_strategy = valid_strategy
1209
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1210

1211 1212
        optimize_ops = []
        params_grads = []
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1223
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1224

1225 1226
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1227
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1228

1229
            default_program = paddle.static.default_main_program()
1230 1231 1232 1233

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1234 1235
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1236
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1237

1238 1239
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1240

1241
        if graph_optimizer:
D
Dong Daxiang 已提交
1242
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1243
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1244 1245 1246 1247
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1248 1249 1250
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1251
        if self._runtime_handle is None:
1252
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1253

1254 1255
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1256 1257

        return optimize_ops, params_grads