huber_loss_op.cc 4.4 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/huber_loss_op.h"

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
26 27
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
28 29 30 31

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

32
    PADDLE_ENFORCE_EQ(x->dims(), y->dims());
Y
yangyaming 已提交
33
    PADDLE_ENFORCE_EQ(framework::arity(x->dims()), 2,
34 35 36 37 38
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
    PADDLE_ENFORCE_EQ(x->dims()[1], 1,
                      "Each row of Input(X) contains a real value, "
                      "so the 2nd dimension of Input(X) must be 1.");
Y
yangyaming 已提交
39

40
    ctx.Output<Tensor>("Residual")->Resize(x->dims());
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50
    ctx.Output<Tensor>("Out")->Resize({x->dims()[0], 1});
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HuberLossOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
51 52 53 54 55 56
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
57
    AddOutput("Residual",
58 59
              "Intermediate tensor to cache residual value of Y and X."
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
60
        .AsIntermediate();
61 62 63
    AddOutput("Out",
              "The output tensor with shape [batch_size, 1] which represents "
              "the huber loss.");
Y
yangyaming 已提交
64 65
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
66 67 68 69
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
70

71 72 73 74 75
L_{\delta}(y, f(x)) =
\begin{cases}
0.5 * (y - f(x))^2, \quad |y - f(x)| \leq \delta \\
\delta * (|y - f(x)| - 0.5 * \delta),   \quad otherwise
\end{cases}
Y
yangyaming 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88

)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
89
    auto* residual = ctx.Input<Tensor>("Residual");
Y
yangyaming 已提交
90 91 92 93
    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));

94 95 96 97
    PADDLE_ENFORCE_NOT_NULL(x, "Input(X) should not be null.");
    PADDLE_ENFORCE_NOT_NULL(y, "Input(Y) should not be null.");
    PADDLE_ENFORCE_NOT_NULL(residual, "Input(Residual) should not be null.");
    PADDLE_ENFORCE_NOT_NULL(out_grad, "Input(Out@GRAD) should not be null.");
Y
yangyaming 已提交
98

99 100
    PADDLE_ENFORCE_EQ(residual->dims(), x->dims());
    PADDLE_ENFORCE_EQ(out_grad->dims(), x->dims());
Y
yangyaming 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    if (x_grad) x_grad->Resize(x->dims());
    if (y_grad) y_grad->Resize(y->dims());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
            huber_loss_grad, ops::HuberLossGradOp);
REGISTER_OP_CPU_KERNEL(huber_loss,
                       ops::HuberLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
    ops::HuberLossGradKernel<paddle::platform::CPUPlace, float>);