to_string.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
from paddle.fluid.layers import core
from paddle.fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

__all__ = ['set_printoptions']


class PrintOptions(object):
    precision = 8
    threshold = 1000
    edgeitems = 3
    linewidth = 80
    sci_mode = False


DEFAULT_PRINT_OPTIONS = PrintOptions()


def set_printoptions(precision=None,
                     threshold=None,
                     edgeitems=None,
                     sci_mode=None):
    """Set the printing options for Tensor.
    NOTE: The function is similar with numpy.set_printoptions()

    Args:
        precision (int, optional): Number of digits of the floating number, default 8.
        threshold (int, optional): Total number of elements printed, default 1000.
        edgeitems (int, optional): Number of elements in summary at the begining and end of each dimension, defalt 3.
        sci_mode (bool, optional): Format the floating number with scientific notation or not, default False.
    
    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.manual_seed(10)
            a = paddle.rand([10, 20])
            paddle.set_printoptions(4, 100, 3)
            print(a)
            
            '''
            Tensor: dygraph_tmp_0
            - place: CPUPlace
            - shape: [10, 20]
            - layout: NCHW
            - dtype: float32
            - data: [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
                    [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
                    [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
                    ...,
                    [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
                    [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
                    [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]]
            '''
    """
    kwargs = {}

    if precision is not None:
        check_type(precision, 'precision', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.precision = precision
        kwargs['precision'] = precision
    if threshold is not None:
        check_type(threshold, 'threshold', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.threshold = threshold
        kwargs['threshold'] = threshold
    if edgeitems is not None:
        check_type(edgeitems, 'edgeitems', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.edgeitems = edgeitems
        kwargs['edgeitems'] = edgeitems
    if sci_mode is not None:
        check_type(sci_mode, 'sci_mode', (bool), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.sci_mode = sci_mode
        kwargs['sci_mode'] = sci_mode
    #TODO(zhiqiu): support linewidth
    core.set_printoptions(**kwargs)


def _to_sumary(var):
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems

    if len(var.shape) == 0:
        return var
    elif len(var.shape) == 1:
        if var.shape[0] > 2 * edgeitems:
            return paddle.concat([var[:edgeitems], var[-edgeitems:]])
        else:
            return var
    else:
        # recursively handle all dimensions
        if var.shape[0] > 2 * edgeitems:
            begin = [x for x in var[:edgeitems]]
            end = [x for x in var[-edgeitems:]]
            return paddle.stack([_to_sumary(x) for x in (begin + end)])
        else:
            return paddle.stack([_to_sumary(x) for x in var])


def _format_item(np_var, max_width=0):
    if np_var.dtype == np.float32 or np_var.dtype == np.float64 or np_var.dtype == np.float16:
        if DEFAULT_PRINT_OPTIONS.sci_mode:
            item_str = '{{:.{}e}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
        elif np.ceil(np_var) == np_var:
            item_str = '{:.0f}.'.format(np_var)
        else:
            item_str = '{{:.{}f}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
    else:
        item_str = '{}'.format(np_var)

    if max_width > len(item_str):
        return '{indent}{data}'.format(
            indent=(max_width - len(item_str)) * ' ', data=item_str)
    else:
        return item_str


def _get_max_width(var):
    max_width = 0
    for item in np.nditer(var.numpy()):
        item_str = _format_item(item)
        max_width = max(max_width, len(item_str))
    return max_width


def _format_tensor(var, sumary, indent=0):
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems
    max_width = _get_max_width(_to_sumary(var))

    if len(var.shape) == 0:
        return _format_item(var.numpy.items(0), max_width)
    elif len(var.shape) == 1:
        if sumary and var.shape[0] > 2 * edgeitems:
            items = [
                _format_item(item, max_width)
                for item in list(var.numpy())[:DEFAULT_PRINT_OPTIONS.edgeitems]
            ] + ['...'] + [
                _format_item(item, max_width)
                for item in list(var.numpy())[-DEFAULT_PRINT_OPTIONS.edgeitems:]
            ]
        else:
            items = [
                _format_item(item, max_width) for item in list(var.numpy())
            ]

        s = ', '.join(items)
        return '[' + s + ']'
    else:
        # recursively handle all dimensions
        if sumary and var.shape[0] > 2 * edgeitems:
            vars = [
                _format_tensor(x, sumary, indent + 1) for x in var[:edgeitems]
            ] + ['...'] + [
                _format_tensor(x, sumary, indent + 1) for x in var[-edgeitems:]
            ]
        else:
            vars = [_format_tensor(x, sumary, indent + 1) for x in var]

        return '[' + (',' + '\n' * (len(var.shape) - 1) + ' ' *
                      (indent + 1)).join(vars) + ']'


def to_string(var, prefix='Tensor'):
    indent = len(prefix) + 1

    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    tensor = var.value().get_tensor()
    if not tensor._is_initialized():
        return "Tensor(Not initialized)"

    if len(var.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in var.shape:
            size *= dim

    sumary = False
    if size > DEFAULT_PRINT_OPTIONS.threshold:
        sumary = True

    data = _format_tensor(var, sumary, indent=indent)

    return _template.format(
        prefix=prefix,
        shape=var.shape,
        dtype=convert_dtype(var.dtype),
        place=var._place_str,
        stop_gradient=var.stop_gradient,
        indent=' ' * indent,
        data=data)