test_inference_model_io.py 3.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dzhwinter 已提交
14 15 16
import unittest

import numpy as np
Q
Qiao Longfei 已提交
17
import paddle.v2.fluid.core as core
18

D
dzhwinter 已提交
19 20 21
import paddle.v2.fluid.executor as executor
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.optimizer as optimizer
22
from paddle.v2.fluid.framework import Program, program_guard
Q
Qiao Longfei 已提交
23
from paddle.v2.fluid.io import save_inference_model, load_inference_model
24 25 26 27 28 29 30 31


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
32 33 34 35 36 37 38 39 40 41 42 43

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
44 45 46 47 48 49 50

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

        for i in xrange(100):
D
dzhwinter 已提交
51
            tensor_x = np.array(
52
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
53
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
54 55 56 57 58 59 60

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
61 62 63 64
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
65 66 67 68 69 70 71 72 73 74 75 76

        reload(executor)  # reload to build a new scope
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
77
        actual = outs[0]
78 79 80 81 82 83 84 85 86

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
        self.assertEqual(str(fetch_vars[0]), str(avg_cost))
        self.assertEqual(expected, actual)


if __name__ == '__main__':
    unittest.main()