jit.py 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22
import inspect
23 24

import six
25
import paddle
26
from paddle.fluid import core
27 28
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
29
from paddle.fluid.layers.utils import flatten, pack_sequence_as
30
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
31
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
32
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
33
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
34
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
35
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
36 37
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
38 39 40
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
41
from paddle.fluid.wrapped_decorator import wrap_decorator
42

43 44
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
45
    'set_verbosity', 'save', 'load', 'not_to_static'
46
]
47 48 49 50 51 52 53 54 55 56


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


57
def _extract_vars(inputs, result_list, err_tag='inputs'):
58
    if isinstance(inputs, Variable):
59
        result_list.append(inputs)
60
    elif isinstance(inputs, (list, tuple)):
61
        for var in inputs:
62
            _extract_vars(var, result_list, err_tag)
63 64
    else:
        raise TypeError(
65 66
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(err_tag, type(inputs)))
67 68


69
def extract_vars(inputs, err_tag='inputs'):
70
    result_list = []
71
    _extract_vars(inputs, result_list, err_tag)
72 73 74
    return result_list


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
124 125
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
126
        if in_dygraph_mode() or not program_translator.enable_to_static:
127
            logging_utils.warn(
128
                "The decorator 'dygraph_to_static_func' doesn't work in "
129
                "dygraph mode or set ProgramTranslator.enable to False. "
130 131 132 133
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
134 135 136 137

    return __impl__


138
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
139

140

141 142 143 144 145 146
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
147
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
162 163 164
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
165 166 167 168
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
169

170
    Args:
171
        function (callable): callable imperative function.
172
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
173
            information of each input Tensor.
174

175
    Returns:
176
        Tensor(s): containing the numerical result.
177

178 179
    Examples:
        .. code-block:: python
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
195

196
    """
197

198 199
    def decorated(python_func):
        """
200
        Decorates a python function into a StaticFunction object.
201 202 203
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
204

205 206 207
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
208
            decorated_obj=StaticFunction(
209 210 211
                function=python_func, input_spec=input_spec))

        return static_layer
212

213 214
    # for usage: `declarative(foo, ...)`
    if function is not None:
215
        if isinstance(function, Layer):
216
            if isinstance(function.forward, StaticFunction):
217
                class_name = function.__class__.__name__
218
                logging_utils.warn(
219 220 221 222 223 224
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
225

226 227
    # for usage: `@declarative`
    return decorated
228 229


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


270
class _SaveLoadConfig(object):
271 272 273 274 275
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
276 277
        # used for `paddle.load`
        self._keep_name_table = False
278 279 280 281

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

282 283
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
284 285 286 287 288 289 290 291 292 293 294 295
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
296 297
        if spec is None:
            return
298 299
        if not isinstance(spec, list):
            raise TypeError(
300
                "The config `output_spec` should be 'list', but received input type is %s."
301 302 303 304
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
305
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
306 307 308 309 310 311 312 313 314
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
315 316
        if filename is None:
            return
317 318
        if not isinstance(filename, six.string_types):
            raise TypeError(
319
                "The config `model_filename` should be str, but received input's type is %s."
320 321
                % type(filename))
        if len(filename) == 0:
322
            raise ValueError("The config `model_filename` is empty string.")
323 324 325 326 327 328 329 330
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
331 332
        if filename is None:
            return
333 334
        if not isinstance(filename, six.string_types):
            raise TypeError(
335
                "The config `params_filename` should be str, but received input's type is %s."
336 337
                % type(filename))
        if len(filename) == 0:
338
            raise ValueError("The config `params_filename` is empty string.")
339 340
        self._params_filename = filename

341 342 343 344 345 346
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
347 348
        if value is None:
            return
349 350
        if not isinstance(value, bool):
            raise TypeError(
351
                "The config `keep_name_table` should be bool value, but received input's type is %s."
352 353 354
                % type(value))
        self._keep_name_table = value

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
def _parse_save_configs(configs):
    supported_configs = ['output_spec']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


391 392 393 394 395 396 397 398 399 400
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
401 402 403
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
404 405 406 407 408 409
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
410
        # if input spec name not in input_var_names, only raise warning
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
441
    for var in flatten(outputs):
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
503

504
    return model_path, config
505 506


507
@switch_to_static_graph
508
def save(layer, path, input_spec=None, **configs):
509
    """
510
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
511 512
    format model, which can be used for inference or fine-tuning after loading.

513
    It will save the translated program and all related persistable
514
    variables of input Layer to given ``path`` .
515 516

    ``path`` is the prefix of saved objects, and the saved translated program file
517
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
518
    and here also saved some additional variable description information to a file,
519
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
520 521

    The saved model can be loaded by follow APIs:
522 523
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
524 525
      - Other C++ inference APIs

526 527 528 529
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

530
    Args:
531
        layer (Layer|function): The Layer or function to be saved.
532
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
533
        input_spec (list[InputSpec|Tensor]|tuple[InputSpec|Tensor], optional): Describes the input of the saved model's forward
534
            method, which can be described by InputSpec or example Tensor. If None, all input variables of
535
            the original Layer's forward method would be the inputs of the saved model. Default None.
536 537
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
538 539 540
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
541 542 543
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
544

545 546 547 548 549 550
    Returns:
        None

    Examples:
        .. code-block:: python

551
            # example 1: save layer
552
            import numpy as np
553 554 555
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
556

557 558 559
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
560

561 562 563 564 565 566 567
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
568

569 570 571 572
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
573

574 575
                def __len__(self):
                    return self.num_samples
576

577 578
            class LinearNet(nn.Layer):
                def __init__(self):
579
                    super(LinearNet, self).__init__()
580
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
581

582
                @paddle.jit.to_static
583 584 585
                def forward(self, x):
                    return self._linear(x)

586 587 588 589 590 591 592 593 594 595 596 597
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
598

599 600 601 602
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
603

604 605 606 607 608 609 610
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
611

612 613
            # train
            train(layer, loader, loss_fn, adam)
614

615
            # save
616 617
            path = "example_model/linear"
            paddle.jit.save(layer, path)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
640 641
    """

642
    # 1. input build & check
643
    prog_translator = ProgramTranslator()
644
    if not prog_translator.enable_to_static:
645
        raise RuntimeError(
646
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
647
        )
648 649 650

    if not (isinstance(layer, Layer) or inspect.isfunction(layer) or isinstance(
            layer, StaticFunction)):
651
        raise TypeError(
652
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
653 654
            % type(layer))

655 656
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
657
    # function_spec, so here we save DataParallel._layers instead
658 659 660 661 662 663 664
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

665 666 667 668 669 670 671 672 673 674 675
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
676

677 678
    # avoid change user given input_spec
    inner_input_spec = None
679
    if input_spec is not None:
680 681 682 683 684 685 686 687 688
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

689
        if not isinstance(input_spec, (list, tuple)):
690 691 692
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
693
        inner_input_spec = []
694
        for var in flatten(input_spec):
695 696 697 698 699 700
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
701
                raise TypeError(
702
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
703 704
                    % type(var))

705 706
    # parse configs
    configs = _parse_save_configs(configs)
707 708
    scope = core.Scope()
    extra_var_info = dict()
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
    else:
        # layer is function
        functions = [layer, ]
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
                # inner_input_spec is list[InputSpec], it should be packed with same sturcture
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec)
                concrete_program = static_forward.concrete_program
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
            for structured_name, var in six.iteritems(inner_layer.state_dict()):
                state_names_dict[var.name] = structured_name

            # 3. share parameters from Layer to scope & record var info
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                param_or_buffer_tensor = scope.var(
                    param_or_buffer.name).get_tensor()
                src_tensor = param_or_buffer.value().get_tensor()
                param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, ParamBase):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
763
        else:
764 765 766 767 768 769 770 771 772 773 774 775 776
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec)
                concrete_program = static_function.concrete_program

        # 4. build input & output of save_infernece_model
777 778 779 780 781 782 783 784 785 786 787 788
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
789 790
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
791 792 793 794 795 796 797 798 799 800
        # var name of output, and we don't recommended to use output_spec
        output_vars = _get_output_vars(concrete_program.outputs,
                                       configs.output_spec)

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
801
        # so we don't support set model_filename & params_filename
802
        if 'forward' == attr_func or not isinstance(layer, Layer):
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
                program_only=configs._program_only)

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
828 829
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
830 831
    # configure redundant information to proceed.
    #
832 833
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
834 835
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
836 837 838 839 840
    if isinstance(layer, Layer) and extra_var_info:
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
841 842 843


@dygraph_only
844
def load(path, **configs):
845 846 847
    """
    :api_attr: imperative

848 849
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
850
    then performing inference or fine-tune training.
851 852

    .. note::
853
        If you load model saved by ``paddle.static.save_inference_model`` ,
854 855
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
856
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
857 858 859 860
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
861
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
862 863
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
864 865
            DO NOT use them. Default None.
            The following options are currently supported:
866 867 868 869
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
870 871
            by default.

872 873 874 875 876

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
877
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
878 879 880 881

        .. code-block:: python

            import numpy as np
882 883 884
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
885

886 887 888
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
889

890 891
            IMAGE_SIZE = 784
            CLASS_NUM = 10
892

893 894 895 896
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
897

898 899 900 901
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
902

903 904 905 906 907
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
908
                    super(LinearNet, self).__init__()
909
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
910

911
                @paddle.jit.to_static
912 913 914
                def forward(self, x):
                    return self._linear(x)

915 916 917 918 919 920 921 922 923 924 925
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

926
            # 1. train & save model.
927

928
            # create network
929 930 931 932
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

933
            # create data loader
934 935 936 937 938 939
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
940

941 942
            # train
            train(layer, loader, loss_fn, adam)
943

944
            # save
945 946
            path = "example_model/linear"
            paddle.jit.save(layer, path)
947

948
            # 2. load model
949

950
            # load
951
            loaded_layer = paddle.jit.load(path)
952 953

            # inference
954 955 956
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
957 958

            # fine-tune
959 960 961
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
962 963


964
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
965 966 967 968

        .. code-block:: python

            import numpy as np
969
            import paddle
970
            import paddle.static as static
971 972
            import paddle.nn as nn
            import paddle.optimizer as opt
973
            import paddle.nn.functional as F
974

975 976 977
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
978

979 980 981 982 983 984 985
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
986

987 988 989 990
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
991

992 993
                def __len__(self):
                    return self.num_samples
994

995 996
            paddle.enable_static()

997 998
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
999
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1000 1001
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1002

1003
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1004 1005
            optimizer.minimize(avg_loss)

1006 1007 1008
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1009

1010 1011 1012 1013 1014
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1015
                batch_size=BATCH_SIZE,
1016 1017 1018
                shuffle=True,
                drop_last=True,
                num_workers=2)
1019 1020 1021 1022

            # 1. train and save inference model
            for data in loader():
                exe.run(
1023
                    static.default_main_program(),
1024
                    feed=data,
1025 1026 1027
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1028
            paddle.fluid.io.save_inference_model(
1029 1030 1031
                model_path, ["image"], [pred], exe)

            # 2. load model
1032 1033

            # enable dygraph mode
1034 1035 1036 1037
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1038

1039 1040 1041
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1042 1043
            pred = fc(x)

1044
            # fine-tune
1045
            fc.train()
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1063
    """
1064 1065 1066 1067
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1068
    return TranslatedLayer._construct(model_path, config)
1069 1070


1071
@dygraph_only
Z
Zeng Jinle 已提交
1072 1073 1074 1075 1076
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1077
    assert isinstance(layer, Layer)
1078 1079 1080 1081 1082 1083 1084 1085 1086

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1087
        original_outputs = layer(*inputs)
1088 1089 1090 1091
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1092
        out_vars = extract_vars(outputs, err_tag='outputs')
1093

1094
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1095
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1096 1097 1098 1099 1100
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1101
    return original_outputs, program, feed_names, fetch_names, parameters
1102 1103 1104 1105


class TracedLayer(object):
    """
1106
    :api_attr: imperative
1107

1108 1109 1110 1111 1112
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1113 1114 1115 1116

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1117 1118

    All TracedLayer objects should not be created by constructor and should
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1130
        self._params = parameters
1131 1132 1133 1134 1135

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1136
            src_tensor = p.value().get_tensor()
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1160
        This method is the only allowed method to create TracedLayer object.
1161 1162 1163 1164
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1165
            layer (paddle.nn.Layer): the layer object to be traced.
1166 1167
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1168 1169

        Returns:
1170
            tuple: A tuple of 2 items, whose the first item is the output of
1171 1172
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1173

1174
        Examples:
1175 1176
            .. code-block:: python:

1177
                import paddle
1178

1179
                class ExampleLayer(paddle.nn.Layer):
1180 1181
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1182
                        self._fc = paddle.nn.Linear(3, 10)
1183 1184 1185 1186

                    def forward(self, input):
                        return self._fc(input)

1187

1188 1189 1190 1191 1192 1193
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1194

1195 1196
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1197

1198 1199
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1200

1201
        """
1202 1203 1204 1205
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1206 1207
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1208 1209 1210 1211 1212 1213 1214
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1215
            build_strategy (BuildStrategy, optional): build strategy of
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1226
                import paddle
1227

1228
                class ExampleLayer(paddle.nn.Layer):
1229 1230
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1231
                        self._fc = paddle.nn.Linear(3, 10)
1232 1233 1234 1235

                    def forward(self, input):
                        return self._fc(input)

1236 1237 1238 1239
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1240

1241 1242
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1243

1244 1245
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1246

1247 1248
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1249 1250 1251

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1252 1253 1254 1255 1256 1257 1258 1259
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1278
                feed_dict[name] = x.value().get_tensor()
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1299
    def save_inference_model(self, path, feed=None, fetch=None):
1300
        """
1301 1302
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1303

1304 1305 1306
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1307
        Args:
1308
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1309
            feed (list[int], optional): the input variable indices of the saved
1310
                inference model. If None, all input variables of the
1311 1312 1313 1314 1315 1316 1317 1318
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1319
            None
1320 1321 1322 1323 1324

        Examples:
            .. code-block:: python:

                import numpy as np
1325
                import paddle
1326

1327
                class ExampleLayer(paddle.nn.Layer):
1328 1329
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1330
                        self._fc = paddle.nn.Linear(3, 10)
1331 1332 1333 1334

                    def forward(self, input):
                        return self._fc(input)

1335 1336
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1337 1338
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1339

1340 1341
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1342

1343 1344 1345 1346
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1347
                                                    exe)
1348 1349 1350

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1351
        """
1352
        check_type(path, "path", str,
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1379
        from paddle.fluid.io import save_inference_model
1380 1381 1382 1383 1384

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1385
            return [all_vars[idx] for idx in partial_vars]
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1396 1397 1398
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1399
            save_inference_model(
1400 1401 1402 1403
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
1404 1405 1406
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename)