distribute_transpiler.py 22.4 KB
Newer Older
T
typhoonzero 已提交
1
from __future__ import print_function
T
done  
typhoonzero 已提交
2 3 4 5
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
6
from distributed_spliter import *
T
typhoonzero 已提交
7
import math
T
done  
typhoonzero 已提交
8 9


T
typhoonzero 已提交
10 11 12 13 14 15
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
16

T
typhoonzero 已提交
17 18
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
19 20


T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def split_selected_rows(var,
                        pserver_count,
                        min_block_size=1024,
                        max_block_size=1048576):
    assert ((len(var.shape)) <= 1)

    split_count = pserver_count
    indices = var.desc.selected_rows().dims()
    var_width = reduce(lambda x, y: x * y, var.shape[1:])
    row_count = len(indices)
    rows_per_block = 1
    if var_width < min_block_size:
        rows_per_block = 1
        split_count = row_count
    else:
        rows_per_block = row_count / pserver_count
        if not rows_per_block % pserver_count:
            rows_per_block += 1
        split_count = row_count / rows_per_block
        if not row_count % rows_per_block:
            split_count += 1
    blocks = []
    for block_id in xrange(split_count):
        curr_block_rows = min(rows_per_block,
                              row_count - (block_id * rows_per_block))
        block = VarBlock(var.name, block_id, curr_block_rows)
        blocks.append(block)
    return blocks


def split_variable(var_list,
                   pserver_count,
                   min_block_size=1024,
                   max_block_size=1048576):
    for var in var_list:
        if var.type == core.VarDesc.VarType.LOD_TENSOR:
            split_dense_variable(var_list, pserver_count, min_block_size,
                                 max_block_size)
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            split_selected_rows(var_list, pserver_count, min_block_size,
                                max_block_size)
        else:
            raise TypeError("variable must be lodtensor or selected rows")


T
done  
typhoonzero 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
132
        assert (callable(split_method))
T
done  
typhoonzero 已提交
133 134
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
135
        self.program = program
T
done  
typhoonzero 已提交
136
        self.trainers = trainers
T
typhoonzero 已提交
137
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
138 139 140 141 142 143
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
144
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
145

T
typhoonzero 已提交
146
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
147 148

        # step1
T
typhoonzero 已提交
149 150
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
151
        # TODO: add split selected rows support
T
typhoonzero 已提交
152 153
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
154
        # step2
T
typhoonzero 已提交
155
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
156 157 158

        # step3
        send_inputs = []
T
typhoonzero 已提交
159
        send_outputs = []
T
typhoonzero 已提交
160 161 162 163
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
164 165
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
166 167 168
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
169 170 171
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
172
        # create mapping of endpoint -> splited var to create pserver side program
T
typhoonzero 已提交
173 174 175 176 177 178 179 180
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
181 182 183 184 185 186

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
187 188 189
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
190 191
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
192 193 194
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
195
                inputs={"X": splited_var},
T
typhoonzero 已提交
196
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
197
                attrs={"axis": 0})
T
typhoonzero 已提交
198 199 200

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
201
        var_mapping = dict()
T
typhoonzero 已提交
202 203 204 205 206 207 208
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
209 210 211 212
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
213 214 215 216
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
217

T
typhoonzero 已提交
218
            for i, block in enumerate(splited):
T
typhoonzero 已提交
219
                size = block[1]
T
typhoonzero 已提交
220 221 222 223
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
224 225 226 227
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
228
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
229
                var_mapping[varname].append(var)
T
typhoonzero 已提交
230
        return var_mapping
T
done  
typhoonzero 已提交
231 232 233 234 235 236 237 238 239

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
240 241 242
            # HACK: let all param in pserver persistable so child
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
243

T
typhoonzero 已提交
244 245 246
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
247 248
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
249
                continue
T
typhoonzero 已提交
250
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
251 252 253
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
254 255 256
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
257 258
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
259
            )
T
typhoonzero 已提交
260
        return var_mapping
T
done  
typhoonzero 已提交
261

T
typhoonzero 已提交
262
    def get_trainer_program(self):
T
typhoonzero 已提交
263
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
264 265
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
266

T
done  
typhoonzero 已提交
267 268 269 270 271 272 273 274 275 276 277
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
                    if n.startswith(op.inputs["Param"].name+".block") and \
                        n != op.inputs["Param"].name:
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
344
        new_inputs = dict()
T
typhoonzero 已提交
345 346
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
347 348 349 350 351 352 353 354 355 356 357
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
358
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
359 360 361 362 363 364
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
365
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
366 367
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
368 369 370
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
371
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
372 373 374 375
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
376 377 378 379 380 381 382 383 384 385
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
386
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
387
                    name=param_block.name,
T
typhoonzero 已提交
388
                    persistable=True,
T
typhoonzero 已提交
389 390
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
391

T
typhoonzero 已提交
392
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
407 408 409 410 411 412 413 414
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
415

T
typhoonzero 已提交
416 417
        # change outputs ParamOut variable
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
418
        program.global_block().append_op(
T
typhoonzero 已提交
419 420 421 422 423
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
424
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
T
typhoonzero 已提交
425
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
426
            program.global_block().create_var(
T
typhoonzero 已提交
427 428 429 430
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
431 432 433 434 435
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
436
        program.global_block().append_op(
T
typhoonzero 已提交
437
            type=opt_op.type,
T
typhoonzero 已提交
438
            inputs=opt_op.inputs,
T
typhoonzero 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

    def get_pserver_program(self, endpoint, optimize_ops):
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
454
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
468 469
        # step6
        optimize_sub_program = Program()
T
typhoonzero 已提交
470 471 472 473 474
        for idx, opt_op in enumerate(optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint, optimize_ops,
                                                      idx)
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
475
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
476 477
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
478
            else:
T
typhoonzero 已提交
479 480
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
T
done  
typhoonzero 已提交
481 482
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
483 484
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
485 486 487 488
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
T
typhoonzero 已提交
489 490 491 492 493 494 495 496
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
497
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
498 499 500
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
501

T
typhoonzero 已提交
502
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        was splited to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
519 520
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
521
        created_var_map = dict()
Y
update  
yi.wu 已提交
522
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
523 524
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
525
                persistable=var.persistable,
T
typhoonzero 已提交
526 527 528 529 530 531 532
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
533 534
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
535 536 537
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
538
                    op_on_pserver = True
T
typhoonzero 已提交
539
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
540
                elif var.name in pserver_vars:
T
typhoonzero 已提交
541
                    op_on_pserver = True
Y
update  
yi.wu 已提交
542 543
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
544
            if op_on_pserver:
T
typhoonzero 已提交
545 546 547
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
548
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
549 550 551 552 553 554
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog