pybind.cc 38.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
38
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/platform/enforce.h"
41
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
42 43 44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
46 47
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
48
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
50

51
#include "paddle/fluid/string/to_string.h"
52

D
Dong Zhihong 已提交
53
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
54 55 56
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
57 58
#endif

M
minqiyang 已提交
59 60
#include "pybind11/stl.h"

61 62 63 64
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
65 66 67
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

68
namespace paddle {
69
namespace pybind {
70
bool IsCompiledWithCUDA() {
71
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
72 73 74 75 76 77
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
78
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
79
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
80 81 82 83 84 85
  return true;
#else
  return false;
#endif
}

86
PYBIND11_PLUGIN(core) {
Y
Refine  
Yu Yang 已提交
87
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
88
  py::module m("core", "C++ core of PaddlePaddle");
89

90 91 92 93
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

94
  BindException(&m);
Y
Yu Yang 已提交
95

96 97 98
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
99
      .def("_get_dims",
100
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
101
      .def("_set_dims",
Q
qijun 已提交
102
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
103
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
104
           })
Y
yuyang18 已提交
105
      .def("_set_layout",
D
dzhwinter 已提交
106 107 108
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
109
      .def("_alloc_float",
D
dzhwinter 已提交
110
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
111
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
112
           })
Y
yuyang18 已提交
113
      .def("_alloc_float",
Y
Yu Yang 已提交
114
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
115
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
116
           })
Y
yuyang18 已提交
117
      .def("_alloc_int",
Y
Yu Yang 已提交
118
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
119
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
120
           })
Y
yuyang18 已提交
121
      .def("_alloc_int",
D
dzhwinter 已提交
122
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
123
             self.mutable_data<int>(place);
Q
qijun 已提交
124
           })
Y
yuyang18 已提交
125
      .def("_alloc_int",
C
chengduoZH 已提交
126 127 128
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
129
      .def("_alloc_float",
C
chengduoZH 已提交
130 131 132
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
133 134
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
135
      .def("set", PyCPUTensorSetFromArray<double>)
136
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
137
      .def("set", PyCPUTensorSetFromArray<bool>)
138
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
139
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
140
      .def("set", PyCPUTensorSetFromArray<int8_t>)
141
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
142 143
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
144
      .def("set", PyCUDATensorSetFromArray<double>)
145
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
146
      .def("set", PyCUDATensorSetFromArray<bool>)
147
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
148
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
149
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
150 151 152 153 154 155
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
156
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
157
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
158
#endif
159
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
160 161 162 163 164
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
165

X
Xin Pan 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
179
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
180
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
181
     columns, hence [5, 2].
X
Xin Pan 已提交
182 183 184

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
185 186
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
210 211
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
212 213 214 215 216 217 218 219 220 221 222 223 224 225
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
226
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
227 228 229 230 231
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
232
      .def("set_lod",
233
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
234
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
235
             LoD new_lod;
236 237
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
238 239
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
240
             self.set_lod(new_lod);
D
dangqingqing 已提交
241
           })
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
267
      // Set above comments of set_lod.
268 269 270 271 272 273 274 275 276 277 278 279 280
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
281 282
      });

Q
qijun 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
296 297 298 299 300 301 302 303 304
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
305
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
306
      .def("rows", [](SelectedRows &self) {
307 308 309 310 311
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
312
      });
Q
qijun 已提交
313

314
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
315 316 317

All parameter, weight, gradient are variables in Paddle.
)DOC")
318
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
319
      .def("set_int",
320 321
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
322 323 324 325 326 327 328
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
329
      .def("get_tensor",
330 331
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
332 333
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
334 335 336
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
337 338 339 340 341
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
342 343 344
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
345 346 347 348 349 350 351
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
352 353 354 355 356
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
357
           py::return_value_policy::reference);
358

Y
Refine  
Yu Yang 已提交
359
  py::class_<framework::ReaderHolder>(m, "Reader", "")
360
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
361

S
sneaxiy 已提交
362 363 364 365
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
366 367
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
368
      .def("push",
S
sneaxiy 已提交
369
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
370
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
371
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
372
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
373
           })
S
sneaxiy 已提交
374 375 376 377
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
378

S
sneaxiy 已提交
379
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
380
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
381
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
382
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
383 384 385 386 387 388
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
389 390
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
391
              return holder->GetQueue();
S
sneaxiy 已提交
392
            },
S
sneaxiy 已提交
393
        py::return_value_policy::copy);
S
sneaxiy 已提交
394

395
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
396
      .def("var",
397
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
398
             return self.Var(name);
Y
Yu Yang 已提交
399
           },
400
           py::return_value_policy::reference)
401
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
402
      .def(py::init<>())
403
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
404
           py::return_value_policy::reference)
Y
Yu Yang 已提交
405
      .def("drop_kids", &Scope::DropKids);
406

Y
Yu Yang 已提交
407 408
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
409 410
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
411 412 413 414 415 416 417 418 419 420
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
421 422
    return ret_values;
  });
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
439
  m.def("prune", [](const ProgramDesc &origin,
440
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
441
    ProgramDesc prog_with_targets(origin);
442
    for (const auto &t : targets) {
443
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
444
    }
445
    proto::ProgramDesc pruned_desc;
446
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
447
    return new ProgramDesc(pruned_desc);
448
  });
449 450 451 452
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
453 454 455
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
456 457
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
458
  // clang-format off
Y
Yu Yang 已提交
459
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
460 461
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
462
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
463 464 465
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
466
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
467
                      -> paddle::platform::DeviceContext* {
468
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
469
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
470
#else
Q
qijun 已提交
471
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
472
#endif
C
chengduoZH 已提交
473 474 475 476 477 478 479 480 481 482 483
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
484 485 486 487
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
488
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
489
      .def(py::init<int>())
D
dzhwinter 已提交
490
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
491

492 493 494
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
495

C
chengduoZH 已提交
496 497 498 499
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
500 501 502 503 504 505 506
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
507
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
508
             self = gpu_place;
C
chengduoZH 已提交
509 510
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
511 512
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
513
      });
Y
Yu Yang 已提交
514

Y
Yu Yang 已提交
515 516 517
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
518
                    proto::OpDesc desc;
Y
Yu Yang 已提交
519 520 521 522 523
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
524
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
525
                  })
526
      .def("run",
527
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
528 529 530
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
531
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
532 533 534 535 536
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
537 538 539 540 541 542 543
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
544 545
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
546
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
547
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
548 549 550 551
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
552

F
fengjiayi 已提交
553
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
554
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
555
      .def("close", &Executor::Close)
S
sneaxiy 已提交
556 557 558 559 560
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
561

D
dzhwinter 已提交
562
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
563
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
564 565
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
566

567
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
568
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
569 570 571 572 573 574
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
575

576
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
577
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
578

X
Xin Pan 已提交
579 580
  m.def("_is_program_version_supported", IsProgramVersionSupported);

581 582 583 584 585
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
586

Y
Yu Yang 已提交
587 588 589 590 591 592 593 594 595
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
596
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
597 598
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
615 616 617
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
618
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
619
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
620
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
621 622 623 624

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
625
#endif
Y
Yu Yang 已提交
626

627 628 629 630
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
631
      .value("kAll", platform::ProfilerState::kAll)
632 633 634 635 636 637 638 639 640 641 642 643 644
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
645
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
646
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
647

648 649
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
650 651 652 653 654 655 656
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
      .def("set_int", [](ir::Pass &self, const std::string &name, int val) {
        self.Set<const int>(name, new int(val));
657 658
      });

X
fix  
Xin Pan 已提交
659 660
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
661 662 663 664 665 666 667 668 669 670 671 672 673 674
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
675
  // -- python binds for parallel executor.
Y
yuyang18 已提交
676
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
677 678 679 680
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
681 682 683 684 685 686 687 688 689 690 691
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
692 693 694

        )DOC");

Y
yuyang18 已提交
695
  exec_strategy.def(py::init())
Y
yuyang18 已提交
696 697 698 699 700
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
701 702 703 704 705 706 707 708 709 710
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
711
      .def_property(
712 713 714 715
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
716 717 718 719
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
720 721 722 723 724
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
725 726 727 728
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
729 730 731 732 733 734 735
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
736 737 738 739 740 741 742 743 744 745 746
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
747 748 749 750 751 752
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
753

Y
yuyang18 已提交
754
  exec_strategy.def_property(
Y
yuyang18 已提交
755 756 757 758 759 760 761
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
762 763
      });

C
chengduo 已提交
764 765 766 767
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
768 769 770 771 772 773 774 775 776 777 778
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
779
)DOC");
Y
yuyang18 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
C
chengduo 已提交
797 798 799 800 801 802 803
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
804 805 806 807 808 809
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
C
chengduo 已提交
810 811 812 813 814 815
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
816 817 818 819 820
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
821 822 823 824
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
825 826 827
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
828 829 830
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
849 850 851 852 853 854 855 856 857 858 859
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
860
      .def("_create_passes_from_strategy",
X
fix  
Xin Pan 已提交
861 862 863
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
             return self.CreatePassesFromStrategy();
           });
Y
yuyang18 已提交
864 865 866 867

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
868
                  const std::string &, Scope *, std::vector<Scope *> &,
869 870
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
871 872 873 874
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
875 876 877 878 879
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
880 881 882 883
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
884 885 886 887 888 889
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
890

891
  BindRecordIOWriter(&m);
892
  return m.ptr();
L
Luo Tao 已提交
893
}
894
}  // namespace pybind
895
}  // namespace paddle