paddle_inference_api.h 5.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16 17
/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
18
 * ATTENTION: It requires some C++11 features, for lower version C++ or C, we
19 20 21
 * might release another API.
 */

Y
Yan Chunwei 已提交
22 23
#pragma once

24
#include <cassert>
25
#include <memory>
Y
Yan Chunwei 已提交
26 27 28 29 30
#include <string>
#include <vector>

namespace paddle {

X
Xin Pan 已提交
31 32 33 34 35
enum PaddleDType {
  FLOAT32,
  INT64,
};

36 37 38 39 40 41 42
class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
43
  PaddleBuf& operator=(PaddleBuf&&);
44 45 46 47
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
T
tensor-tang 已提交
48
  explicit PaddleBuf(size_t length)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
X
Xin Pan 已提交
65 66
};

67
struct PaddleTensor {
68
  PaddleTensor() = default;
69 70
  std::string name;  // variable name.
  std::vector<int> shape;
X
Xin Pan 已提交
71 72
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
T
Tao Luo 已提交
73
  std::vector<std::vector<size_t>> lod;  // Tensor+LoD equals LoDTensor
74 75
};

Y
Yan Chunwei 已提交
76
enum class PaddleEngineKind {
77 78 79
  kNative = 0,         // Use the native Fluid facility.
  kAnakin,             // Use Anakin for inference.
  kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
80
  kAnalysis
Y
Yan Chunwei 已提交
81 82 83 84 85
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
};

86
/*
Y
Yan Chunwei 已提交
87 88 89
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
90
class PaddlePredictor {
W
Wu Yi 已提交
91
 public:
92 93 94
  struct Config;
  PaddlePredictor() = default;
  PaddlePredictor(const PaddlePredictor&) = delete;
95
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;
Y
Yan Chunwei 已提交
96 97

  // Predict an record.
X
Xin Pan 已提交
98
  // The caller should be responsible for allocating and releasing the memory of
99 100 101
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
102
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
103 104
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;
105 106 107 108

  // Clone a predictor that share the model weights, the Cloned predictor should
  // be thread-safe.
  virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
Y
Yan Chunwei 已提交
109 110

  // Destroy the Predictor.
111
  virtual ~PaddlePredictor() = default;
112 113 114

  // The common configs for all the predictors.
  struct Config {
Y
Yan Chunwei 已提交
115
    std::string model_dir;  // path to the model directory.
Y
Yan Chunwei 已提交
116 117 118
  };
};

Y
Yan Chunwei 已提交
119
struct NativeConfig : public PaddlePredictor::Config {
Y
Yan Chunwei 已提交
120
  // GPU related fields.
Y
Yan Chunwei 已提交
121
  bool use_gpu{false};
Y
Yan Chunwei 已提交
122 123
  int device{0};
  float fraction_of_gpu_memory{-1.f};  // Negative to notify initialization.
T
tensor-tang 已提交
124 125
  // MKLDNN related fields.
  bool use_mkldnn{false};
126 127
  // Specify the variable's name of each input.
  bool specify_input_name{false};
Y
Yan Chunwei 已提交
128

Y
Yan Chunwei 已提交
129 130 131 132
  std::string prog_file;
  std::string param_file;
};

Y
Yan Chunwei 已提交
133 134
// Configurations for Anakin engine.
struct AnakinConfig : public PaddlePredictor::Config {
C
cuichaowen 已提交
135
  enum TargetType { NVGPU = 0, X86 };
Y
Yan Chunwei 已提交
136 137 138
  int device;
  std::string model_file;
  int max_batch_size{-1};
C
cuichaowen 已提交
139
  TargetType target_type;
Y
Yan Chunwei 已提交
140 141
};

142 143 144
struct TensorRTConfig : public NativeConfig {
  // Determine whether a subgraph will be executed by TRT.
  int min_subgraph_size{1};
145 146 147 148 149 150 151 152
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
  int max_batch_size{1};
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
  int workspace_size{1 << 30};
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
// NOTE WIP, not stable yet.
struct AnalysisConfig : public NativeConfig {
  //
  enum class IrPassMode {
    kSystem,   // Use system default passes, not customize.
    kInclude,  // Specify the passes in `ir_passes`.
    kExclude   // Specify the disabled passes in `ir_passes`.
  };

  bool enable_ir_optim = true;
  IrPassMode ir_mode{IrPassMode::kExclude};
  // attention lstm fuse works only on some specific models, disable as default.
  std::vector<std::string> ir_passes{"attention_lstm_fuse_pass"};
};

Y
Yan Chunwei 已提交
170 171 172 173 174 175 176 177 178
// A factory to help create different predictors.
//
// FOR EXTENSION DEVELOPER:
// Different predictors are designated by config type and engine kind. Similar
// configs can be merged, but there shouldn't be a huge config containing
// different fields for more than one kind of predictors.
//
// Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
179
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
180 181 182

int PaddleDtypeSize(PaddleDType dtype);

Y
Yan Chunwei 已提交
183
}  // namespace paddle