elementwise_max_op.h 5.0 KB
Newer Older
F
wip  
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/operators/elementwise_op_function.h"

namespace paddle {
namespace operators {

template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35 36 37 38
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
    ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis, z);
F
wip  
fengjiayi 已提交
39 40 41 42
  }
};

template <typename T>
F
fengjiayi 已提交
43
struct ElementwiseMaxGradFunctor {
F
wip  
fengjiayi 已提交
44 45 46 47 48
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
49
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
wip  
fengjiayi 已提交
50 51 52

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
53
      dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
54 55 56
    }
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
57
      dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
58 59 60 61 62
    }
  }
};

template <typename T>
F
fengjiayi 已提交
63
struct ElementwiseMaxBroadCastGradFunctor {
F
wip  
fengjiayi 已提交
64
  template <typename Device, typename X, typename Y, typename Z, typename dX,
F
fengjiayi 已提交
65 66 67 68
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
wip  
fengjiayi 已提交
69
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
fengjiayi 已提交
70 71 72 73 74 75 76 77 78 79 80 81

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
82
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
83 84 85 86 87 88 89 90 91 92 93 94
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
    }
  }
};

template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
F
wip  
fengjiayi 已提交
95 96
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
97 98 99 100 101
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
F
wip  
fengjiayi 已提交
102 103
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
104
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
105
    }
F
fengjiayi 已提交
106

F
wip  
fengjiayi 已提交
107 108
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
109
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
110 111
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
F
wip  
fengjiayi 已提交
112 113 114 115
    }
  }
};

F
fengjiayi 已提交
116 117 118 119
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
120 121 122 123 124 125 126 127 128
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
F
fengjiayi 已提交
129 130
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
                           ElementwiseMaxBroadCastGradFunctor<T>,
C
chengduoZH 已提交
131 132
                           ElementwiseMaxBroadCast2GradFunctor<T>>(
        ctx, x, y, out, dout, axis, dx, dy);
F
fengjiayi 已提交
133 134 135
  }
};

F
wip  
fengjiayi 已提交
136 137
}  // namespace operators
}  // namespace paddle