py_layer_fwd.h 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include <vector>
#include "paddle/fluid/imperative/layer.h"
20
#include "paddle/fluid/imperative/prepared_operator.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/imperative/tracer.h"

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/operators/py_layer_op.h"

namespace paddle {
namespace imperative {

namespace py = ::pybind11;

bool RequiredGrad(const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  for (const auto& name_pair : ins) {
    for (const auto& var_base : name_pair.second) {
      if (!var_base->OverridedStopGradient()) {
36 37 38 39 40 41 42 43 44 45 46
        for (const auto& pair : outs) {
          for (const auto& var : pair.second) {
            if (var) {
              var->SetOverridedStopGradient(false);
              SetForwardDataTypeOfGradVar(var);
              VLOG(3) << "Set output: " << var->Name()
                      << "'s OverridedStopGradient as "
                      << var->OverridedStopGradient();
            }
          }
        }
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        return true;
      }
    }
  }
  return false;
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const std::string& type, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
    const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map,
    const std::shared_ptr<operators::PyLayerContext>& py_context) {
  operators::PyLayerGradOpMaker<paddle::imperative::OpBase> maker(
      type, ins, outs, attrs, inplace_map);

  maker.SetPyLayerContext(py_context);
  auto grad_node = maker();
  if (grad_node && !grad_node->empty()) {
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

77
py::object PyLayerApply(const platform::Place& place, const py::handle& cls,
78
                        const py::args args, const py::kwargs kwargs) {
79
  py::gil_scoped_acquire guard;
80 81 82 83 84 85
  auto bk_function = cls.attr("_backward_function");
  auto context = bk_function();
  auto forward = cls.attr("forward");

  auto result_forward = forward(context, *args, **kwargs);
  std::shared_ptr<operators::PyLayerContext> py_layer_ctx =
86
      std::make_shared<operators::PyLayerContext>(context.ptr());
87 88 89 90 91
  // make inputs to varbase
  std::vector<std::shared_ptr<imperative::VarBase>> input_vars;
  // process args,`input_vars` only collect `imperative::VarBase`
  if (!args.empty()) {
    for (auto ptr = args.begin(); ptr != args.end(); ptr++) {
92 93 94 95
      // Only collect Tensor type in 'args' and pass them to backward. Ignore
      // other types of input temporarily.
      if (py::isinstance<imperative::VarBase>(*ptr)) {
        try {
96 97
          auto a = ptr->cast<std::shared_ptr<VarBase>>();
          input_vars.push_back(a);
98 99 100 101 102
        } catch (py::cast_error& err) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The `PyLayer.forward` function contains invalid argument, the "
              "`%s` type argument can not be cast into `Tensor`.",
              ptr->ptr()->ob_type->tp_name));
103 104 105 106 107 108 109
        }
      }
    }
  }
  // process kwargs, only collect `imperative::VarBase`
  if (!kwargs.empty()) {
    for (auto ptr = kwargs.begin(); ptr != kwargs.end(); ptr++) {
110 111 112 113
      // Only collect Tensor type in 'kwargs' and pass them to backward.
      // Ignore other types of input temporarily.
      if (py::isinstance<imperative::VarBase>(*ptr->second)) {
        try {
114 115
          auto a = ptr->second.cast<std::shared_ptr<VarBase>>();
          input_vars.push_back(a);
116 117 118 119 120
        } catch (py::cast_error&) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The `PyLayer.forward` function contains invalid argument, the "
              "`%s` type argument can not be cast into `Tensor`.",
              ptr->second.ptr()->ob_type->tp_name));
121 122 123 124 125 126 127 128 129 130 131
        }
      }
    }
  }
  NameVarBaseMap ins = {{"X", input_vars}};

  std::vector<std::shared_ptr<imperative::VarBase>> output_vars;
  if (PyTuple_Check(result_forward.ptr()) ||
      PyList_Check(result_forward.ptr())) {
    auto tuple_result = result_forward.cast<py::tuple>();
    for (size_t i = 0; i < tuple_result.size(); i++) {
132 133 134
      // Only collect Tensor type of output and pass them to backward.
      // Ignore other types of input temporarily.
      if (py::isinstance<imperative::VarBase>(tuple_result[i])) {
135 136 137 138 139
        try {
          auto temp_out =
              tuple_result[i].cast<std::shared_ptr<imperative::VarBase>>();
          output_vars.push_back(temp_out);
        } catch (py::cast_error&) {
140 141 142 143
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The `PyLayer.forward` function returns invalid argument, the "
              "`%s` type argument can not be cast into `Tensor`.",
              tuple_result[i].ptr()->ob_type->tp_name));
144 145 146 147
        }
      }
    }
  } else {
148 149 150
    // Only collect Tensor type of output and pass them to backward.
    // Ignore other types of input temporarily.
    if (py::isinstance<imperative::VarBase>(result_forward)) {
151 152 153 154 155
      try {
        auto temp_out =
            result_forward.cast<std::shared_ptr<imperative::VarBase>>();
        output_vars.push_back(temp_out);
      } catch (py::cast_error&) {
156 157 158 159
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The `PyLayer.forward` function returns invalid argument, the `%s` "
            "type argument can not be cast into `Tensor`.",
            result_forward.ptr()->ob_type->tp_name));
160 161 162
      }
    }
  }
163 164 165 166
  if (output_vars.size() == 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "At least one output of `PyLayer.forward` is a `Tensor`."));
  }
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  NameVarBaseMap outs = {{"Out", output_vars}};

  if (RequiredGrad(ins, outs)) {
    std::map<std::string, std::string> inplace_map{};
    bool if_inplace = false;
    for (auto temp_ins : input_vars) {
      if (if_inplace) {
        break;
      }
      for (auto temp_outs : output_vars) {
        if (temp_ins->Name() == temp_outs->Name()) {
          if_inplace = true;
          break;
        }
      }
    }
    if (if_inplace) {
      inplace_map["X"] = "Out";
    }

    CreateGradOpNode("py_layer", ins, outs, {{}}, place, inplace_map,
                     py_layer_ctx);
  } else {
    VLOG(3) << "No Grad to track for Op: py_layer_op";
  }

  return result_forward;
}

}  // namespace imperative
}  // namespace paddle