GIBBS_Tutorial_CN.ipynb 14.3 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 吉布斯态的制备 (Gibbs State Preparation)\n",
    "\n",
    "<em> Copyright (c) 2020 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 概览\n",
    "- 在这个案例中,我们将展示如何通过Paddle Quantum训练量子神经网络来制备量子吉布斯态。\n",
    "\n",
    "- 让我们通过下面几行代码引入必要的library和package。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import scipy\n",
    "\n",
    "from numpy import array, concatenate, zeros\n",
    "from numpy import pi as PI\n",
    "from numpy import trace as np_trace\n",
    "\n",
    "from paddle import fluid\n",
    "from paddle.complex import matmul, trace\n",
    "from paddle_quantum.circuit import UAnsatz\n",
    "from paddle_quantum.state import density_op\n",
Q
Quleaf 已提交
43
    "from paddle_quantum.utils import state_fidelity, partial_trace, pauli_str_to_matrix"
Q
Quleaf 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## 背景\n",
    "\n",
    "量子计算中的前沿方向包括量子机器学习和量子优化,在这两个方向中,特定量子态的制备是非常重要的问题。特别的,吉布斯态(Gibbs state)的制备是实现诸多量子算法所必须的一个步骤并且广泛应用于:\n",
    "- 量子机器学习中受限波尔兹曼机的学习 [1]\n",
    "- 解决凸优化和半正定规划等优化问题 [2]\n",
    "- 组合优化问题 [3]\n",
    "\n",
    "具体的吉布斯态定义如下:给定一个 $n$ 量子位的哈密顿量 $H$(一般来说这是一个$2^n\\times2^n$的厄米矩阵),其在温度 $T$ 下的吉布斯态为 \n",
    "$$\n",
    "\\rho_G = \\frac{{{e^{ - \\beta H}}}}{{tr({e^{ - \\beta H}})}}\n",
    "$$\n",
    "\n",
    "其中 ${e^{ - \\beta H}}$ 是矩阵 $ - \\beta H$ 的矩阵指数,$\\beta  = \\frac{1}{{kT}}$ 是系统的逆温度参数,其中 $T$ 是温度参数,$k$ 是玻尔兹曼常数 (这个例子中我们取 $k = 1$)。作为一个上手的例子,这里我们首先考虑一个3量子比特的哈密顿量及其吉布斯态。\n",
    "\n",
    "$$\n",
    "H = -Z \\otimes Z \\otimes I - I \\otimes Z \\otimes Z - Z \\otimes I \\otimes Z,\\,\n",
    "I=\\left [\n",
    "\\begin{matrix}\n",
    "1 & 0  \\\\\n",
    "0 & 1  \\\\\n",
    "\\end{matrix} \n",
    "\\right ],\n",
    "Z=\\left [\n",
    "\\begin{matrix}\n",
    "1 & 0  \\\\\n",
    "0 & -1  \\\\\n",
    "\\end{matrix} \n",
    "\\right ].$$\n",
    "\n",
    "\n",
    "这个例子中,我们将逆温度参数设置为 $\\beta = 1.5$。此外,为了方便测试结果,我们按照定义提前生成好了理想情况的吉布斯态。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [],
   "source": [
    "N = 4        # 量子神经网络的宽度\n",
    "N_SYS_B = 3  # 用于生成吉布斯态的子系统B的量子比特数   \n",
    "SEED = 14    # 固定随机种子"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "beta = 1.5   # 设置逆温度参数 beta\n",
    "\n",
    "# 生成用泡利字符串表示的特定的哈密顿量\n",
    "H = [[-1.0, 'z0,z1'], [-1.0, 'z1,z2'], [-1.0, 'z0,z2']]\n",
    "\n",
    "# 生成哈密顿量的矩阵信息\n",
    "hamiltonian = pauli_str_to_matrix(H, N_SYS_B)\n",
    "\n",
    "# 生成理想情况下的目标吉布斯态 rho\n",
    "rho_G = scipy.linalg.expm(-1 * beta * hamiltonian) / np_trace(scipy.linalg.expm(-1 * beta * hamiltonian))\n",
    "\n",
    "# 设置成 Paddle quantum 所支持的数据类型\n",
    "hamiltonian = hamiltonian.astype(\"complex128\")\n",
    "rho_G = rho_G.astype(\"complex128\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 搭建量子神经网络\n",
    "\n",
    "- 在这个案例中,我们将通过训练量子神经网络QNN(也可以理解为参数化量子电路)来训练吉布斯态。这里,我们提供一个简单的4量子位的量子电路如下:\n",
    "![Ugibbs.jpg](https://release-data.cdn.bcebos.com/PIC%2FUgibbs.jpg)\n",
    "\n",
    "- 我们需要预设一些电路的参数,比如电路有4量子比特,其中第1个量子位是辅助系统,第2-4个量子位是用以产生吉布斯态的子系统。\n",
    "\n",
    "- 初始化其中的变量参数,${\\bf{\\theta }}$ 代表我们量子神经网络中的参数组成的向量。\n",
    "         "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "接下来我们根据上图中的电路设计,通过 Paddle Quantum 的 `UAnsatz` 函数和内置的 `real_entangled_layer(theta, D)` 电路模板来高效搭建量子神经网络。      "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "def U_theta(initial_state, theta, N, D):\n",
    "    \"\"\"\n",
    "    Quantum Neural Network\n",
    "    \"\"\"\n",
    "    \n",
    "    # 按照量子比特数量/网络宽度初始化量子神经网络\n",
    "    cir = UAnsatz(N)\n",
    "    \n",
    "    # 内置的 {R_y + CNOT} 电路模板\n",
    "    cir.real_entangled_layer(theta[:D], D)\n",
    "    \n",
    "    # 铺上最后一列 R_y 旋转门\n",
    "    for i in range(N):\n",
    "        cir.ry(theta=theta[D][i][0], which_qubit=i)\n",
    "        \n",
    "    # 量子神经网络作用在给定的初始态上\n",
    "    final_state = cir.run_density_matrix(initial_state)\n",
    "\n",
    "    return final_state"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## 配置训练模型 - 损失函数\n",
    "- 现在我们已经有了数据和量子神经网络的架构,我们将进一步定义合适的训练参数、模型和损失函数来达到我们的目标。\n",
    "- 具体的我们参考的是论文[4]中的方法,核心思想是利用吉布斯态达到了最小自由能的性质。\n",
    "- 通过作用量子神经网络 $U(\\theta)$ 在初始态上,我们可以得到输出态 $\\left| {\\psi \\left( {\\bf{\\theta }} \\right)} \\right\\rangle $, 其在第2-4个量子位的态记为 $\\rho_B(\\theta)$。\n",
    "- 设置训练模型中的的损失函数。在吉布斯态学习中,我们利用冯诺依曼熵函数的截断来进行自由能的估计,相应的损失函数参考[4]可以设为 \n",
    "$loss= {L_1} + {L_2} + {L_3}$,其中 ${L_1}= tr(H\\rho_B)$, ${L_2} = 2{\\beta^{-1}}{tr}(\\rho_B^2)$ , $L_3 = - {\\beta ^{ - 1}}\\big(tr(\\rho_B^3) + 3\\big)/2$。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "class Net(fluid.dygraph.Layer):\n",
    "    \"\"\"\n",
    "    Construct the model net\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, shape, param_attr=fluid.initializer.Uniform(low=0.0, high=2*PI, seed=SEED),\n",
    "                 dtype='float64'):\n",
    "        super(Net, self).__init__()\n",
    "        \n",
    "        # 初始化 theta 参数列表,并用 [0, 2*pi] 的均匀分布来填充初始值\n",
    "        self.theta = self.create_parameter(shape=shape, attr=param_attr, dtype=dtype, is_bias=False)\n",
    "        \n",
    "        # 初始化 rho = |0..0><0..0| 的密度矩阵\n",
    "        self.initial_state = fluid.dygraph.to_variable(density_op(N))\n",
    "\n",
    "    # 定义损失函数和前向传播机制\n",
    "    def forward(self, H, N, N_SYS_B, D):\n",
    "\n",
    "        # 施加量子神经网络\n",
    "        rho_AB = U_theta(self.initial_state, self.theta, N, D)\n",
    "\n",
    "        # 计算偏迹 partial trace 来获得子系统B所处的量子态 rho_B\n",
    "        rho_B = partial_trace(rho_AB, 2 ** (N - N_SYS_B), 2 ** (N_SYS_B), 1)\n",
    "        \n",
    "        # 计算三个子损失函数\n",
    "        rho_B_squre = matmul(rho_B, rho_B)\n",
    "        loss1 = (trace(matmul(rho_B, H))).real\n",
    "        loss2 = (trace(rho_B_squre)).real * 2 / beta\n",
    "        loss3 = - ((trace(matmul(rho_B_squre, rho_B))).real + 3) / (2 * beta)\n",
    "        \n",
    "        # 最终的损失函数\n",
    "        loss = loss1 + loss2 + loss3  \n",
    "\n",
    "        return loss, rho_B"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 配置训练模型 - 模型参数\n",
    "\n",
    "在进行量子神经网络的训练之前,我们还需要进行一些训练的超参数设置,主要是学习速率 (LR, learning rate)、迭代次数(ITR, iteration)和量子神经网络计算模块的深度 (D, Depth)。这里我们设定学习速率为0.5, 迭代次数为50次。读者不妨自行调整来直观感受下超参数调整对训练效果的影响。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "ITR = 50 # 设置训练的总迭代次数\n",
    "LR = 0.5 # 设置学习速率\n",
    "D = 1    # 设置量子神经网络中重复计算模块的深度 Depth"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 进行训练\n",
    "\n",
    "- 当训练模型的各项参数都设置完成后,我们将数据转化为Paddle动态图中的变量,进而进行量子神经网络的训练。\n",
    "- 训练过程中我们用的是[Adam Optimizer](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/optimizer_cn/AdagradOptimizer_cn.html),也可以调用Paddle中提供的其他优化器。\n",
    "- 我们将训练过程中的结果依次输出。\n",
    "- 特别的我们依次输出了我们学习到的量子态$\\rho_B(\\theta)$与吉布斯态$\\rho_G$的保真度,保真度越高说明QNN输出的态越接近于吉布斯态。\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 5 loss: -2.5615 fid: 0.8631\n",
      "iter: 10 loss: -3.1189 fid: 0.9504\n",
      "iter: 15 loss: -3.3290 fid: 0.9732\n",
      "iter: 20 loss: -3.3502 fid: 0.9846\n",
      "iter: 25 loss: -3.3446 fid: 0.9868\n",
      "iter: 30 loss: -3.3630 fid: 0.9873\n",
      "iter: 35 loss: -3.3937 fid: 0.9916\n",
      "iter: 40 loss: -3.4087 fid: 0.9948\n",
      "iter: 45 loss: -3.4108 fid: 0.9954\n",
      "iter: 50 loss: -3.4110 fid: 0.9953\n"
     ]
    }
   ],
   "source": [
    "# 初始化paddle动态图机制\n",
    "with fluid.dygraph.guard():\n",
    "    \n",
    "    # 我们需要将 Numpy array 转换成 Paddle 动态图模式中支持的 variable\n",
    "    H = fluid.dygraph.to_variable(hamiltonian)\n",
    "\n",
    "    # 确定网络的参数维度\n",
    "    net = Net(shape=[D + 1, N, 1])\n",
    "\n",
    "    # 一般来说,我们利用Adam优化器来获得相对好的收敛,当然你可以改成SGD或者是RMS prop.\n",
    "    opt = fluid.optimizer.AdamOptimizer(learning_rate=LR, parameter_list=net.parameters())\n",
    "\n",
    "     # 优化循环\n",
    "    for itr in range(1, ITR + 1):\n",
    "        \n",
    "        # 前向传播计算损失函数并返回生成的量子态 rho_B\n",
    "        loss, rho_B = net(H, N, N_SYS_B, D)\n",
    "        \n",
    "        # 在动态图机制下,反向传播极小化损失函数\n",
    "        loss.backward()\n",
    "        opt.minimize(loss)\n",
    "        net.clear_gradients()\n",
    "\n",
    "        # 转换成 Numpy array 用以计算量子态的保真度 F(rho_B, rho_G)\n",
    "        rho_B = rho_B.numpy()\n",
    "        fid = state_fidelity(rho_B, rho_G)\n",
    "        \n",
    "        # 打印训练结果\n",
    "        if itr % 5 == 0:\n",
    "            print('iter:', itr, 'loss:', '%.4f' % loss.numpy(), 'fid:', '%.4f' % fid)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 总结\n",
    "根据上面训练得到的结果,通过大概50次迭代,我们就能达到高于99.5%保真度的高精度吉布斯态,高效并精确地完成了吉布斯态的制备。我们可以通过print函数来输出学习到的量子神经网络的参数和它的输出态。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 参考文献\n",
    "\n",
    "[1] [Kieferová, M. & Wiebe, N. Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 96, 062327 (2017).](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062327)\n",
    "\n",
    "[2] [Brandao, F. G. S. L. & Svore, K. M. Quantum Speed-Ups for Solving Semidefinite Programs. in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) 415–426 (IEEE, 2017). ](https://ieeexplore.ieee.org/abstract/document/8104077)\n",
    "\n",
    "[3] [Somma, R. D., Boixo, S., Barnum, H. & Knill, E. Quantum Simulations of Classical Annealing Processes. Phys. Rev. Lett. 101, 130504 (2008).](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.130504)\n",
    "\n",
    "[4] [Wang, Y., Li, G. & Wang, X. Variational quantum Gibbs state preparation with a truncated Taylor series. arXiv:2005.08797 (2020).](https://arxiv.org/pdf/2005.08797.pdf)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
388
   "version": "3.7.7"
Q
Quleaf 已提交
389 390 391 392 393
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}