提交 9569e238 编写于 作者: W WAKAYAMA Shirou

Merge branch 'master' of https://github.com/shirou/gopsutil

......@@ -135,7 +135,7 @@ cpu_times_percent x x x
virtual_memory x x x x
swap_memory x x x
disk_partitions x x x x
disk_io_counters x
disk_io_counters x x
disk_usage x x x x
net_io_counters x x b x
boot_time x x x x
......
......@@ -3,8 +3,10 @@
package common
import (
"syscall"
"os/exec"
"strings"
"unsafe"
)
func DoSysctrl(mib string) ([]string, error) {
......@@ -18,3 +20,42 @@ func DoSysctrl(mib string) ([]string, error) {
return values, nil
}
func CallSyscall(mib []int32) ([]byte, uint64, error) {
miblen := uint64(len(mib))
// get required buffer size
length := uint64(0)
_, _, err := syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
0,
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
var b []byte
return b, length, err
}
if length == 0 {
var b []byte
return b, length, err
}
// get proc info itself
buf := make([]byte, length)
_, _, err = syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
return buf, length, err
}
return buf, length, nil
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package binary implements simple translation between numbers and byte
// sequences and encoding and decoding of varints.
//
// Numbers are translated by reading and writing fixed-size values.
// A fixed-size value is either a fixed-size arithmetic
// type (int8, uint8, int16, float32, complex64, ...)
// or an array or struct containing only fixed-size values.
//
// The varint functions encode and decode single integer values using
// a variable-length encoding; smaller values require fewer bytes.
// For a specification, see
// http://code.google.com/apis/protocolbuffers/docs/encoding.html.
//
// This package favors simplicity over efficiency. Clients that require
// high-performance serialization, especially for large data structures,
// should look at more advanced solutions such as the encoding/gob
// package or protocol buffers.
package disk
import (
"errors"
"io"
"math"
"reflect"
)
// A ByteOrder specifies how to convert byte sequences into
// 16-, 32-, or 64-bit unsigned integers.
type ByteOrder interface {
Uint16([]byte) uint16
Uint32([]byte) uint32
Uint64([]byte) uint64
PutUint16([]byte, uint16)
PutUint32([]byte, uint32)
PutUint64([]byte, uint64)
String() string
}
// LittleEndian is the little-endian implementation of ByteOrder.
var LittleEndian littleEndian
// BigEndian is the big-endian implementation of ByteOrder.
var BigEndian bigEndian
type littleEndian struct{}
func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 }
func (littleEndian) PutUint16(b []byte, v uint16) {
b[0] = byte(v)
b[1] = byte(v >> 8)
}
func (littleEndian) Uint32(b []byte) uint32 {
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func (littleEndian) PutUint32(b []byte, v uint32) {
b[0] = byte(v)
b[1] = byte(v >> 8)
b[2] = byte(v >> 16)
b[3] = byte(v >> 24)
}
func (littleEndian) Uint64(b []byte) uint64 {
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func (littleEndian) PutUint64(b []byte, v uint64) {
b[0] = byte(v)
b[1] = byte(v >> 8)
b[2] = byte(v >> 16)
b[3] = byte(v >> 24)
b[4] = byte(v >> 32)
b[5] = byte(v >> 40)
b[6] = byte(v >> 48)
b[7] = byte(v >> 56)
}
func (littleEndian) String() string { return "LittleEndian" }
func (littleEndian) GoString() string { return "binary.LittleEndian" }
type bigEndian struct{}
func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 }
func (bigEndian) PutUint16(b []byte, v uint16) {
b[0] = byte(v >> 8)
b[1] = byte(v)
}
func (bigEndian) Uint32(b []byte) uint32 {
return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
}
func (bigEndian) PutUint32(b []byte, v uint32) {
b[0] = byte(v >> 24)
b[1] = byte(v >> 16)
b[2] = byte(v >> 8)
b[3] = byte(v)
}
func (bigEndian) Uint64(b []byte) uint64 {
return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}
func (bigEndian) PutUint64(b []byte, v uint64) {
b[0] = byte(v >> 56)
b[1] = byte(v >> 48)
b[2] = byte(v >> 40)
b[3] = byte(v >> 32)
b[4] = byte(v >> 24)
b[5] = byte(v >> 16)
b[6] = byte(v >> 8)
b[7] = byte(v)
}
func (bigEndian) String() string { return "BigEndian" }
func (bigEndian) GoString() string { return "binary.BigEndian" }
// Read reads structured binary data from r into data.
// Data must be a pointer to a fixed-size value or a slice
// of fixed-size values.
// Bytes read from r are decoded using the specified byte order
// and written to successive fields of the data.
// When reading into structs, the field data for fields with
// blank (_) field names is skipped; i.e., blank field names
// may be used for padding.
// When reading into a struct, all non-blank fields must be exported.
func Read(r io.Reader, order ByteOrder, data interface{}) error {
// Fast path for basic types and slices.
if n := intDataSize(data); n != 0 {
var b [8]byte
var bs []byte
if n > len(b) {
bs = make([]byte, n)
} else {
bs = b[:n]
}
if _, err := io.ReadFull(r, bs); err != nil {
return err
}
switch data := data.(type) {
case *int8:
*data = int8(b[0])
case *uint8:
*data = b[0]
case *int16:
*data = int16(order.Uint16(bs))
case *uint16:
*data = order.Uint16(bs)
case *int32:
*data = int32(order.Uint32(bs))
case *uint32:
*data = order.Uint32(bs)
case *int64:
*data = int64(order.Uint64(bs))
case *uint64:
*data = order.Uint64(bs)
case []int8:
for i, x := range bs { // Easier to loop over the input for 8-bit values.
data[i] = int8(x)
}
case []uint8:
copy(data, bs)
case []int16:
for i := range data {
data[i] = int16(order.Uint16(bs[2*i:]))
}
case []uint16:
for i := range data {
data[i] = order.Uint16(bs[2*i:])
}
case []int32:
for i := range data {
data[i] = int32(order.Uint32(bs[4*i:]))
}
case []uint32:
for i := range data {
data[i] = order.Uint32(bs[4*i:])
}
case []int64:
for i := range data {
data[i] = int64(order.Uint64(bs[8*i:]))
}
case []uint64:
for i := range data {
data[i] = order.Uint64(bs[8*i:])
}
}
return nil
}
// Fallback to reflect-based decoding.
v := reflect.ValueOf(data)
size := -1
switch v.Kind() {
case reflect.Ptr:
v = v.Elem()
size = dataSize(v)
case reflect.Slice:
size = dataSize(v)
}
if size < 0 {
return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String())
}
d := &decoder{order: order, buf: make([]byte, size)}
if _, err := io.ReadFull(r, d.buf); err != nil {
return err
}
d.value(v)
return nil
}
// Write writes the binary representation of data into w.
// Data must be a fixed-size value or a slice of fixed-size
// values, or a pointer to such data.
// Bytes written to w are encoded using the specified byte order
// and read from successive fields of the data.
// When writing structs, zero values are written for fields
// with blank (_) field names.
func Write(w io.Writer, order ByteOrder, data interface{}) error {
// Fast path for basic types and slices.
if n := intDataSize(data); n != 0 {
var b [8]byte
var bs []byte
if n > len(b) {
bs = make([]byte, n)
} else {
bs = b[:n]
}
switch v := data.(type) {
case *int8:
bs = b[:1]
b[0] = byte(*v)
case int8:
bs = b[:1]
b[0] = byte(v)
case []int8:
for i, x := range v {
bs[i] = byte(x)
}
case *uint8:
bs = b[:1]
b[0] = *v
case uint8:
bs = b[:1]
b[0] = byte(v)
case []uint8:
bs = v
case *int16:
bs = b[:2]
order.PutUint16(bs, uint16(*v))
case int16:
bs = b[:2]
order.PutUint16(bs, uint16(v))
case []int16:
for i, x := range v {
order.PutUint16(bs[2*i:], uint16(x))
}
case *uint16:
bs = b[:2]
order.PutUint16(bs, *v)
case uint16:
bs = b[:2]
order.PutUint16(bs, v)
case []uint16:
for i, x := range v {
order.PutUint16(bs[2*i:], x)
}
case *int32:
bs = b[:4]
order.PutUint32(bs, uint32(*v))
case int32:
bs = b[:4]
order.PutUint32(bs, uint32(v))
case []int32:
for i, x := range v {
order.PutUint32(bs[4*i:], uint32(x))
}
case *uint32:
bs = b[:4]
order.PutUint32(bs, *v)
case uint32:
bs = b[:4]
order.PutUint32(bs, v)
case []uint32:
for i, x := range v {
order.PutUint32(bs[4*i:], x)
}
case *int64:
bs = b[:8]
order.PutUint64(bs, uint64(*v))
case int64:
bs = b[:8]
order.PutUint64(bs, uint64(v))
case []int64:
for i, x := range v {
order.PutUint64(bs[8*i:], uint64(x))
}
case *uint64:
bs = b[:8]
order.PutUint64(bs, *v)
case uint64:
bs = b[:8]
order.PutUint64(bs, v)
case []uint64:
for i, x := range v {
order.PutUint64(bs[8*i:], x)
}
}
_, err := w.Write(bs)
return err
}
// Fallback to reflect-based encoding.
v := reflect.Indirect(reflect.ValueOf(data))
size := dataSize(v)
if size < 0 {
return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String())
}
buf := make([]byte, size)
e := &encoder{order: order, buf: buf}
e.value(v)
_, err := w.Write(buf)
return err
}
// Size returns how many bytes Write would generate to encode the value v, which
// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data.
// If v is neither of these, Size returns -1.
func Size(v interface{}) int {
return dataSize(reflect.Indirect(reflect.ValueOf(v)))
}
// dataSize returns the number of bytes the actual data represented by v occupies in memory.
// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice
// it returns the length of the slice times the element size and does not count the memory
// occupied by the header. If the type of v is not acceptable, dataSize returns -1.
func dataSize(v reflect.Value) int {
if v.Kind() == reflect.Slice {
if s := sizeof(v.Type().Elem()); s >= 0 {
return s * v.Len()
}
return -1
}
return sizeof(v.Type())
}
// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable.
func sizeof(t reflect.Type) int {
switch t.Kind() {
case reflect.Array:
if s := sizeof(t.Elem()); s >= 0 {
return s * t.Len()
}
case reflect.Struct:
sum := 0
for i, n := 0, t.NumField(); i < n; i++ {
s := sizeof(t.Field(i).Type)
if s < 0 {
return -1
}
sum += s
}
return sum
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr:
return int(t.Size())
}
return -1
}
type coder struct {
order ByteOrder
buf []byte
}
type decoder coder
type encoder coder
func (d *decoder) uint8() uint8 {
x := d.buf[0]
d.buf = d.buf[1:]
return x
}
func (e *encoder) uint8(x uint8) {
e.buf[0] = x
e.buf = e.buf[1:]
}
func (d *decoder) uint16() uint16 {
x := d.order.Uint16(d.buf[0:2])
d.buf = d.buf[2:]
return x
}
func (e *encoder) uint16(x uint16) {
e.order.PutUint16(e.buf[0:2], x)
e.buf = e.buf[2:]
}
func (d *decoder) uint32() uint32 {
x := d.order.Uint32(d.buf[0:4])
d.buf = d.buf[4:]
return x
}
func (e *encoder) uint32(x uint32) {
e.order.PutUint32(e.buf[0:4], x)
e.buf = e.buf[4:]
}
func (d *decoder) uint64() uint64 {
x := d.order.Uint64(d.buf[0:8])
d.buf = d.buf[8:]
return x
}
func (e *encoder) uint64(x uint64) {
e.order.PutUint64(e.buf[0:8], x)
e.buf = e.buf[8:]
}
func (d *decoder) int8() int8 { return int8(d.uint8()) }
func (e *encoder) int8(x int8) { e.uint8(uint8(x)) }
func (d *decoder) int16() int16 { return int16(d.uint16()) }
func (e *encoder) int16(x int16) { e.uint16(uint16(x)) }
func (d *decoder) int32() int32 { return int32(d.uint32()) }
func (e *encoder) int32(x int32) { e.uint32(uint32(x)) }
func (d *decoder) int64() int64 { return int64(d.uint64()) }
func (e *encoder) int64(x int64) { e.uint64(uint64(x)) }
func (d *decoder) value(v reflect.Value) {
switch v.Kind() {
case reflect.Array:
l := v.Len()
for i := 0; i < l; i++ {
d.value(v.Index(i))
}
case reflect.Struct:
t := v.Type()
l := v.NumField()
for i := 0; i < l; i++ {
// Note: Calling v.CanSet() below is an optimization.
// It would be sufficient to check the field name,
// but creating the StructField info for each field is
// costly (run "go test -bench=ReadStruct" and compare
// results when making changes to this code).
if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
d.value(v)
} else {
d.skip(v)
}
}
case reflect.Slice:
l := v.Len()
for i := 0; i < l; i++ {
d.value(v.Index(i))
}
case reflect.Int8:
v.SetInt(int64(d.int8()))
case reflect.Int16:
v.SetInt(int64(d.int16()))
case reflect.Int32:
v.SetInt(int64(d.int32()))
case reflect.Int64:
v.SetInt(d.int64())
case reflect.Uint8:
v.SetUint(uint64(d.uint8()))
case reflect.Uint16:
v.SetUint(uint64(d.uint16()))
case reflect.Uint32:
v.SetUint(uint64(d.uint32()))
case reflect.Uint64:
v.SetUint(d.uint64())
case reflect.Float32:
v.SetFloat(float64(math.Float32frombits(d.uint32())))
case reflect.Float64:
v.SetFloat(math.Float64frombits(d.uint64()))
case reflect.Complex64:
v.SetComplex(complex(
float64(math.Float32frombits(d.uint32())),
float64(math.Float32frombits(d.uint32())),
))
case reflect.Complex128:
v.SetComplex(complex(
math.Float64frombits(d.uint64()),
math.Float64frombits(d.uint64()),
))
}
}
func (e *encoder) value(v reflect.Value) {
switch v.Kind() {
case reflect.Array:
l := v.Len()
for i := 0; i < l; i++ {
e.value(v.Index(i))
}
case reflect.Struct:
t := v.Type()
l := v.NumField()
for i := 0; i < l; i++ {
// see comment for corresponding code in decoder.value()
if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
e.value(v)
} else {
e.skip(v)
}
}
case reflect.Slice:
l := v.Len()
for i := 0; i < l; i++ {
e.value(v.Index(i))
}
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
switch v.Type().Kind() {
case reflect.Int8:
e.int8(int8(v.Int()))
case reflect.Int16:
e.int16(int16(v.Int()))
case reflect.Int32:
e.int32(int32(v.Int()))
case reflect.Int64:
e.int64(v.Int())
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
switch v.Type().Kind() {
case reflect.Uint8:
e.uint8(uint8(v.Uint()))
case reflect.Uint16:
e.uint16(uint16(v.Uint()))
case reflect.Uint32:
e.uint32(uint32(v.Uint()))
case reflect.Uint64:
e.uint64(v.Uint())
}
case reflect.Float32, reflect.Float64:
switch v.Type().Kind() {
case reflect.Float32:
e.uint32(math.Float32bits(float32(v.Float())))
case reflect.Float64:
e.uint64(math.Float64bits(v.Float()))
}
case reflect.Complex64, reflect.Complex128:
switch v.Type().Kind() {
case reflect.Complex64:
x := v.Complex()
e.uint32(math.Float32bits(float32(real(x))))
e.uint32(math.Float32bits(float32(imag(x))))
case reflect.Complex128:
x := v.Complex()
e.uint64(math.Float64bits(real(x)))
e.uint64(math.Float64bits(imag(x)))
}
}
}
func (d *decoder) skip(v reflect.Value) {
d.buf = d.buf[dataSize(v):]
}
func (e *encoder) skip(v reflect.Value) {
n := dataSize(v)
for i := range e.buf[0:n] {
e.buf[i] = 0
}
e.buf = e.buf[n:]
}
// intDataSize returns the size of the data required to represent the data when encoded.
// It returns zero if the type cannot be implemented by the fast path in Read or Write.
func intDataSize(data interface{}) int {
switch data := data.(type) {
case int8, *int8, *uint8:
return 1
case []int8:
return len(data)
case []uint8:
return len(data)
case int16, *int16, *uint16:
return 2
case []int16:
return 2 * len(data)
case []uint16:
return 2 * len(data)
case int32, *int32, *uint32:
return 4
case []int32:
return 4 * len(data)
case []uint32:
return 4 * len(data)
case int64, *int64, *uint64:
return 8
case []int64:
return 8 * len(data)
case []uint64:
return 8 * len(data)
}
return 0
}
......@@ -3,79 +3,88 @@
package disk
import (
"bytes"
"encoding/binary"
"strconv"
"syscall"
"unsafe"
common "github.com/shirou/gopsutil/common"
)
const (
CTLKern = 1
KernDevstat = 773
KernDevstatAll = 772
)
func DiskPartitions(all bool) ([]DiskPartitionStat, error) {
var ret []DiskPartitionStat
// get length
count, err := syscall.Getfsstat(nil, MntWait)
count, err := syscall.Getfsstat(nil, MNT_WAIT)
if err != nil {
return ret, err
}
fs := make([]Statfs, count)
_, err = Getfsstat(fs, MntWait)
_, err = Getfsstat(fs, MNT_WAIT)
for _, stat := range fs {
opts := "rw"
if stat.FFlags&MntReadOnly != 0 {
if stat.Flags&MNT_RDONLY != 0 {
opts = "ro"
}
if stat.FFlags&MntSynchronous != 0 {
if stat.Flags&MNT_SYNCHRONOUS != 0 {
opts += ",sync"
}
if stat.FFlags&MntNoExec != 0 {
if stat.Flags&MNT_NOEXEC != 0 {
opts += ",noexec"
}
if stat.FFlags&MntNoSuid != 0 {
if stat.Flags&MNT_NOSUID != 0 {
opts += ",nosuid"
}
if stat.FFlags&MntUnion != 0 {
if stat.Flags&MNT_UNION != 0 {
opts += ",union"
}
if stat.FFlags&MntAsync != 0 {
if stat.Flags&MNT_ASYNC != 0 {
opts += ",async"
}
if stat.FFlags&MntSuidDir != 0 {
if stat.Flags&MNT_SUIDDIR != 0 {
opts += ",suiddir"
}
if stat.FFlags&MntSoftDep != 0 {
if stat.Flags&MNT_SOFTDEP != 0 {
opts += ",softdep"
}
if stat.FFlags&MntNoSymFollow != 0 {
if stat.Flags&MNT_NOSYMFOLLOW != 0 {
opts += ",nosymfollow"
}
if stat.FFlags&MntGEOMJournal != 0 {
if stat.Flags&MNT_GJOURNAL != 0 {
opts += ",gjounalc"
}
if stat.FFlags&MntMultilabel != 0 {
if stat.Flags&MNT_MULTILABEL != 0 {
opts += ",multilabel"
}
if stat.FFlags&MntACLs != 0 {
if stat.Flags&MNT_ACLS != 0 {
opts += ",acls"
}
if stat.FFlags&MntNoATime != 0 {
if stat.Flags&MNT_NOATIME != 0 {
opts += ",noattime"
}
if stat.FFlags&MntClusterRead != 0 {
if stat.Flags&MNT_NOCLUSTERR != 0 {
opts += ",nocluster"
}
if stat.FFlags&MntClusterWrite != 0 {
if stat.Flags&MNT_NOCLUSTERW != 0 {
opts += ",noclusterw"
}
if stat.FFlags&MntNFS4ACLs != 0 {
if stat.Flags&MNT_NFS4ACLS != 0 {
opts += ",nfs4acls"
}
d := DiskPartitionStat{
Device: common.ByteToString(stat.FMntfromname[:]),
Mountpoint: common.ByteToString(stat.FMntonname[:]),
Fstype: common.ByteToString(stat.FFstypename[:]),
Device: common.IntToString(stat.Mntfromname[:]),
Mountpoint: common.IntToString(stat.Mntonname[:]),
Fstype: common.IntToString(stat.Fstypename[:]),
Opts: opts,
}
ret = append(ret, d)
......@@ -85,35 +94,55 @@ func DiskPartitions(all bool) ([]DiskPartitionStat, error) {
}
func DiskIOCounters() (map[string]DiskIOCountersStat, error) {
return nil, common.NotImplementedError
// statinfo->devinfo->devstat
// /usr/include/devinfo.h
// get length
count, err := Getfsstat(nil, MntWait)
// sysctl.sysctl ('kern.devstat.all', 0)
ret := make(map[string]DiskIOCountersStat)
mib := []int32{CTLKern, KernDevstat, KernDevstatAll}
buf, length, err := common.CallSyscall(mib)
if err != nil {
return nil, err
}
fs := make([]Statfs, count)
_, err = Getfsstat(fs, MntWait)
ret := make(map[string]DiskIOCountersStat, 0)
for _, stat := range fs {
name := common.ByteToString(stat.FMntonname[:])
d := DiskIOCountersStat{
ds := Devstat{}
devstatLen := int(unsafe.Sizeof(ds))
count := int(length / uint64(devstatLen))
buf = buf[8:] // devstat.all has version in the head.
// parse buf to Devstat
for i := 0; i < count; i++ {
b := buf[i*devstatLen : i*devstatLen+devstatLen]
d, err := parseDevstat(b)
if err != nil {
continue
}
un := strconv.Itoa(int(d.Unit_number))
name := common.IntToString(d.Device_name[:]) + un
ds := DiskIOCountersStat{
ReadCount: d.Operations[DEVSTAT_READ],
WriteCount: d.Operations[DEVSTAT_WRITE],
ReadBytes: d.Bytes[DEVSTAT_READ],
WriteBytes: d.Bytes[DEVSTAT_WRITE],
ReadTime: d.Duration[DEVSTAT_READ].Compute(),
WriteTime: d.Duration[DEVSTAT_WRITE].Compute(),
Name: name,
ReadCount: stat.FSyncwrites + stat.FAsyncwrites,
WriteCount: stat.FSyncreads + stat.FAsyncreads,
}
ret[name] = d
ret[name] = ds
}
return ret, nil
}
func (b Bintime) Compute() uint64 {
BINTIME_SCALE := 5.42101086242752217003726400434970855712890625e-20
return uint64(b.Sec) + b.Frac*uint64(BINTIME_SCALE)
}
// BT2LD(time) ((long double)(time).sec + (time).frac * BINTIME_SCALE)
// Getfsstat is borrowed from pkg/syscall/syscall_freebsd.go
// change Statfs_t to Statfs in order to get more information
func Getfsstat(buf []Statfs, flags int) (n int, err error) {
......@@ -130,3 +159,15 @@ func Getfsstat(buf []Statfs, flags int) (n int, err error) {
}
return
}
func parseDevstat(buf []byte) (Devstat, error) {
var ds Devstat
br := bytes.NewReader(buf)
// err := binary.Read(br, binary.LittleEndian, &ds)
err := Read(br, binary.LittleEndian, &ds)
if err != nil {
return ds, err
}
return ds, nil
}
// +build freebsd
// +build amd64
// Created by cgo -godefs - DO NOT EDIT
// cgo -godefs types_freebsd.go
package disk
const (
MntWait = 1
MfsNameLen = 16 /* length of type name including null */
MNameLen = 88 /* size of on/from name bufs */
sizeofPtr = 0x8
sizeofShort = 0x2
sizeofInt = 0x4
sizeofLong = 0x8
sizeofLongLong = 0x8
sizeofLongDouble = 0x8
DEVSTAT_NO_DATA = 0x00
DEVSTAT_READ = 0x01
DEVSTAT_WRITE = 0x02
DEVSTAT_FREE = 0x03
MNT_RDONLY = 0x00000001
MNT_SYNCHRONOUS = 0x00000002
MNT_NOEXEC = 0x00000004
MNT_NOSUID = 0x00000008
MNT_UNION = 0x00000020
MNT_ASYNC = 0x00000040
MNT_SUIDDIR = 0x00100000
MNT_SOFTDEP = 0x00200000
MNT_NOSYMFOLLOW = 0x00400000
MNT_GJOURNAL = 0x02000000
MNT_MULTILABEL = 0x04000000
MNT_ACLS = 0x08000000
MNT_NOATIME = 0x10000000
MNT_NOCLUSTERR = 0x40000000
MNT_NOCLUSTERW = 0x80000000
MNT_NFS4ACLS = 0x00000010
MNT_WAIT = 1
MNT_NOWAIT = 2
MNT_LAZY = 3
MNT_SUSPEND = 4
)
// sys/mount.h
const (
MntReadOnly = 0x00000001 /* read only filesystem */
MntSynchronous = 0x00000002 /* filesystem written synchronously */
MntNoExec = 0x00000004 /* can't exec from filesystem */
MntNoSuid = 0x00000008 /* don't honor setuid bits on fs */
MntUnion = 0x00000020 /* union with underlying filesystem */
MntAsync = 0x00000040 /* filesystem written asynchronously */
MntSuidDir = 0x00100000 /* special handling of SUID on dirs */
MntSoftDep = 0x00200000 /* soft updates being done */
MntNoSymFollow = 0x00400000 /* do not follow symlinks */
MntGEOMJournal = 0x02000000 /* GEOM journal support enabled */
MntMultilabel = 0x04000000 /* MAC support for individual objects */
MntACLs = 0x08000000 /* ACL support enabled */
MntNoATime = 0x10000000 /* disable update of file access time */
MntClusterRead = 0x40000000 /* disable cluster read */
MntClusterWrite = 0x80000000 /* disable cluster write */
MntNFS4ACLs = 0x00000010
type (
_C_short int16
_C_int int32
_C_long int64
_C_long_long int64
_C_long_double int64
)
type Statfs struct {
FVersion uint32 /* structure version number */
FType uint32 /* type of filesystem */
FFlags uint64 /* copy of mount exported flags */
FBsize uint64 /* filesystem fragment size */
FIosize uint64 /* optimal transfer block size */
FBlocks uint64 /* total data blocks in filesystem */
FBfree uint64 /* free blocks in filesystem */
FBavail int64 /* free blocks avail to non-superuser */
FFiles uint64 /* total file nodes in filesystem */
FFfree int64 /* free nodes avail to non-superuser */
FSyncwrites uint64 /* count of sync writes since mount */
FAsyncwrites uint64 /* count of async writes since mount */
FSyncreads uint64 /* count of sync reads since mount */
FAsyncreads uint64 /* count of async reads since mount */
FSpare [10]uint64 /* unused spare */
FNamemax uint32 /* maximum filename length */
FOwner uint32 /* user that mounted the filesystem */
FFsid int32 /* filesystem id */
FCharspare [80]byte /* spare string space */
FFstypename [MfsNameLen]byte /* filesystem type name */
FMntfromname [MNameLen]byte /* mounted filesystem */
FMntonname [MNameLen]byte /* directory on which mounted */
Version uint32
Type uint32
Flags uint64
Bsize uint64
Iosize uint64
Blocks uint64
Bfree uint64
Bavail int64
Files uint64
Ffree int64
Syncwrites uint64
Asyncwrites uint64
Syncreads uint64
Asyncreads uint64
Spare [10]uint64
Namemax uint32
Owner uint32
Fsid Fsid
Charspare [80]int8
Fstypename [16]int8
Mntfromname [88]int8
Mntonname [88]int8
}
type Fsid struct {
Val [2]int32
}
// /usr/include/devstat.h
// devstat_getdevs()
// kern.devstat.all -> devstats list struct
// struct devinfo {
// struct devstat *devices;
// u_int8_t *mem_ptr;
// long generation;
// int numdevs;
// };
//
// struct statinfo {
// long cp_time[CPUSTATES];
// long tk_nin;
// long tk_nout;
// struct devinfo *dinfo;
// long double snap_time;
// };
// /usr/include/devinfo.h
type Devstat struct {
Sequence0 uint32
Allocated int32
Start_count uint32
End_count uint32
Busy_from Bintime
Dev_links _Ctype_struct___0
Device_number uint32
Device_name [16]int8
Unit_number int32
Bytes [4]uint64
Operations [4]uint64
Duration [4]Bintime
Busy_time Bintime
Creation_time Bintime
Block_size uint32
Pad_cgo_0 [4]byte
Tag_types [3]uint64
Flags uint32
Device_type uint32
Priority uint32
Pad_cgo_1 [4]byte
Id *byte
Sequence1 uint32
Pad_cgo_2 [4]byte
}
type Bintime struct {
Sec int64
Frac uint64
}
// struct devinfo_dev {
// devinfo_handle_t dd_handle; /* device handle */
// devinfo_handle_t dd_parent; /* parent handle */
// char *dd_name; /* name of device */
// char *dd_desc; /* device description */
// char *dd_drivername; /* name of attached driver */
// char *dd_pnpinfo; /* pnp info from parent bus */
// char *dd_location; /* Where bus thinks dev at */
// uint32_t dd_devflags; /* API flags */
// uint16_t dd_flags; /* internal dev flags */
// device_state_t dd_state; /* attachment state of dev */
// };
//
// struct devinfo_rman {
// devinfo_handle_t dm_handle; /* resource manager handle */
// u_long dm_start; /* resource start */
// u_long dm_size; /* resource size */
// char *dm_desc; /* resource description */
// };
//
// struct devinfo_res {
// devinfo_handle_t dr_handle; /* resource handle */
// devinfo_handle_t dr_rman; /* resource manager handle */
// devinfo_handle_t dr_device; /* owning device */
// u_long dr_start; /* region start */
// u_long dr_size; /* region size */
// };
type _Ctype_struct___0 struct {
Empty uint64
}
......@@ -35,11 +35,15 @@ func TestDisk_partitions(t *testing.T) {
func TestDisk_io_counters(t *testing.T) {
ret, err := DiskIOCounters()
if err != nil || len(ret) == 0 {
if err != nil {
t.Errorf("error %v", err)
}
if len(ret) == 0 {
t.Errorf("ret is empty", ret)
}
empty := DiskIOCountersStat{}
for part, io := range ret {
fmt.Println(io)
if io == empty {
t.Errorf("io_counter error %v, %v", part, io)
}
......
// +build ignore
// Hand writing: _Ctype_struct___0
/*
Input to cgo -godefs.
*/
package disk
/*
#include <sys/types.h>
#include <sys/mount.h>
#include <devstat.h>
enum {
sizeofPtr = sizeof(void*),
};
// because statinfo has long double snap_time, redefine with changing long long
struct statinfo2 {
long cp_time[CPUSTATES];
long tk_nin;
long tk_nout;
struct devinfo *dinfo;
long long snap_time;
};
*/
import "C"
// Machine characteristics; for internal use.
const (
sizeofPtr = C.sizeofPtr
sizeofShort = C.sizeof_short
sizeofInt = C.sizeof_int
sizeofLong = C.sizeof_long
sizeofLongLong = C.sizeof_longlong
sizeofLongDouble = C.sizeof_longlong
DEVSTAT_NO_DATA = 0x00
DEVSTAT_READ = 0x01
DEVSTAT_WRITE = 0x02
DEVSTAT_FREE = 0x03
// from sys/mount.h
MNT_RDONLY = 0x00000001 /* read only filesystem */
MNT_SYNCHRONOUS = 0x00000002 /* filesystem written synchronously */
MNT_NOEXEC = 0x00000004 /* can't exec from filesystem */
MNT_NOSUID = 0x00000008 /* don't honor setuid bits on fs */
MNT_UNION = 0x00000020 /* union with underlying filesystem */
MNT_ASYNC = 0x00000040 /* filesystem written asynchronously */
MNT_SUIDDIR = 0x00100000 /* special handling of SUID on dirs */
MNT_SOFTDEP = 0x00200000 /* soft updates being done */
MNT_NOSYMFOLLOW = 0x00400000 /* do not follow symlinks */
MNT_GJOURNAL = 0x02000000 /* GEOM journal support enabled */
MNT_MULTILABEL = 0x04000000 /* MAC support for individual objects */
MNT_ACLS = 0x08000000 /* ACL support enabled */
MNT_NOATIME = 0x10000000 /* disable update of file access time */
MNT_NOCLUSTERR = 0x40000000 /* disable cluster read */
MNT_NOCLUSTERW = 0x80000000 /* disable cluster write */
MNT_NFS4ACLS = 0x00000010
MNT_WAIT = 1 /* synchronously wait for I/O to complete */
MNT_NOWAIT = 2 /* start all I/O, but do not wait for it */
MNT_LAZY = 3 /* push data not written by filesystem syncer */
MNT_SUSPEND = 4 /* Suspend file system after sync */
)
// Basic types
type (
_C_short C.short
_C_int C.int
_C_long C.long
_C_long_long C.longlong
_C_long_double C.longlong
)
type Statfs C.struct_statfs
type Fsid C.struct_fsid
type Devstat C.struct_devstat
type Bintime C.struct_bintime
......@@ -5,7 +5,6 @@ package process
import (
"bytes"
"encoding/binary"
"syscall"
"unsafe"
common "github.com/shirou/gopsutil/common"
......@@ -200,7 +199,7 @@ func processes() ([]Process, error) {
results := make([]Process, 0, 50)
mib := []int32{CTLKern, KernProc, KernProcProc, 0}
buf, length, err := callSyscall(mib)
buf, length, err := common.CallSyscall(mib)
if err != nil {
return results, err
}
......@@ -240,48 +239,10 @@ func parseKinfoProc(buf []byte) (KinfoProc, error) {
return k, nil
}
func callSyscall(mib []int32) ([]byte, uint64, error) {
miblen := uint64(len(mib))
// get required buffer size
length := uint64(0)
_, _, err := syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
0,
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
var b []byte
return b, length, err
}
if length == 0 {
var b []byte
return b, length, err
}
// get proc info itself
buf := make([]byte, length)
_, _, err = syscall.Syscall6(
syscall.SYS___SYSCTL,
uintptr(unsafe.Pointer(&mib[0])),
uintptr(miblen),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&length)),
0,
0)
if err != 0 {
return buf, length, err
}
return buf, length, nil
}
func (p *Process) getKProc() (*KinfoProc, error) {
mib := []int32{CTLKern, KernProc, KernProcPID, p.Pid}
buf, length, err := callSyscall(mib)
buf, length, err := common.CallSyscall(mib)
if err != nil {
return nil, err
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册