全球大模型产品库.md 36.8 KB
Newer Older
1
# 全球大模型产品库(持续更新)
唐门教主's avatar
唐门教主 已提交
2

3
本项目旨在收集国内外大模型相关产品及组织的情况,会不断更新维护,如果您有推荐的信息或建议,欢迎提交 Issues 或 PR,一起参与贡献。同时,您在提交时,也可将您的信息一起更新至致谢名单,感谢您一起共建全球大模型产品库。
唐门教主's avatar
唐门教主 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16

## 国际

| 机构名称(企业/高校/科研机构) | 大模型相关产品名称及官网 | 总负责人 | 备注 |
| :-- | :-- | :-- | :-- |
| OpenAI(微软系) | ChatGPT | Sam Altman,OpenAI 创始人<br>Mira Murati,OpenAI CTO |
| 微软 | Bing AI、<br>Bing Image Creator、<br>GitHub Copilot X |  | GitHub Copilot X 是下一代编程助手,包含 5 大功能:GitHub Copilot Chat(边写代码边跟 AI 对话),Copilot for Pull Requests(AI 协助处理 PR),Copilot for Docs(智能文档系统),Copilot for CLI(让命令行用起来更智能),Copilot Voice(直接语音生成代码!) |
| Google | Bard | | |

## 中国

| 机构名称(企业/高校/科研机构) | 大模型相关产品名称及官网 | 总负责人 |
| :-- | :-- | :-- |
17
| 百度 | 文心一言 | 王海峰,百度集团 CTO |
唐门教主's avatar
唐门教主 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31
| 阿里巴巴 | [通义千问](https://tongyi.aliyun.com/) | 周靖人,阿里云智能 CTO |
| 腾讯 | 混元大模型/混元助手 | 张正友,腾讯首席科学家、腾讯 TEG-AI Lab 及 Robotics X 实验室主任<br>俞栋,腾讯 TEG-AI Lab 副主任 |
| 华为 | 盘古大模型 | 田奇,华为云人工智能领域首席科学家 |
| 字节跳动 | 飞书“My AI” | |
| 京东 | Chat JD | |
| 奇虎360 | 360 智脑 | |
| 网易 | 中文预训练大模型“玉言” | |
| 小米 | 暂无信息 | |
| 第四范式 | 式说 3.0 | |
| 商汤科技 | 日日新 SenseNova/商量 | |
| 科大讯飞 | 讯飞星火大模型 | |
| 出门问问 | 序列猴子| |
| 智谱 AI | ChatGLM | |
| 澜舟科技 | 孟子 MChat 可控大模型 | |
32 33 34
| 知乎 | 知海图 AI | |
| 昆仑万维 | 天工 | |
| 麒麟合盛(APUS) | 天燕大模型 AiLMe | |
唐门教主's avatar
唐门教主 已提交
35 36 37 38 39 40 41 42 43 44 45 46
| 毫末智行 | 自动驾驶生成式大模型 DriveGPT |
| 竹间智能 | 魔力写作 | |
| miniMax | 自研大模型 | |
| 面壁科技 | 与知乎合作中文大模型“知海图 AI” | |
| 光年之外 | | 王慧文 |
|  | Project 2.0 | 李开复 |
| 百川智能 |  | 王小川 |
| 衔远科技 | | 周伯文 |
| Boson.ai | | 李沐 |
| 复旦大学 | 对话式大模型 MOSS | 邱锡鹏 |
|武汉人工智能研究院、中国科学院自动化研究所和华为联合研发 | 多模态大模型“紫东太初” | |
| 上海人工智能实验室 | 天气预报大模型“风乌” |  |
47
| 清华大学 | GLM-130B |  |
唐门教主's avatar
唐门教主 已提交
48 49 50 51
| 智源人工智能研究院 | 悟道 2.0(FlagOpen) | |
| IDEA 研究院 | 封神榜、姜子牙 | 张家兴,IDEA 讲席科学家 |
| 达观数据 | 曹植 | 陈运文,达观数据 CEO |
| 网易有道 | 子曰 | |
52
| 学而思 | MathGPT | |
53 54 55 56
| 云从科技 | 从容 |
| 面壁智能 | CPM | 曾国洋,面壁智能CTO |


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
## 截至2023年5月,大型预训练模型列表
|#|Name|Release Date|Domain|Affiliation|# of Parameters|Language|Paper/News|Model|Code|API|
| :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- |
|1|ChatGPT|2022/11|Text|OpenAI|~100B|Multilingual|https://openai.com/blog/chatgpt/|-|-|https://chat.openai.com/
|2|Galactica|2022/11|Text|Meta|1.3B , 6.7B , 30B , 120B|English|https://arxiv.org/abs/2211.09085|-|-|-
|3|ERNIE-ViLG 2.0|2022/10|Text/Vision|Baidu|24B|Chinese|https://arxiv.org/abs/2210.15257|-|-|-
|4|WeLM|2022/10|Text|Tencent|1.3B , 2.7B , 10B|Chinese|https://arxiv.org/abs/2209.10372|-|-|https://welm.weixin.qq.com/docs/api/
|5|Magneto|2022/10|Text|Microsoft|1B|English|https://arxiv.org/abs/2210.06423|-|-|-
|6|Imagen Video|2022/10|Text/Vision|Google|11.6B|English|https://arxiv.org/abs/2210.02303|-|-|-
|7|Whisper|2022/9|Audio|OpenAI|1.55B|Multilingual|https://cdn.openai.com/papers/whisper.pdf|https://github.com/openai/whisper|https://github.com/openai/whisper|-
|8|Sparrow|2022/9|Text|DeepMind|70B|English|https://arxiv.org/abs/2209.14375|-|-|-
|9|CodeGeeX|2022/9|Code|Tsinghua University/Peng Cheng Laboratory/Zhipu.AI|13B|-|http://keg.cs.tsinghua.edu.cn/codegeex/|-|https://github.com/THUDM/CodeGeeX|-
|10|CPM-Ant|2022/9|Text|OpenBMB|1B , 3B , 7B , 10B|Chinese|https://www.openbmb.org/en/community/blogs/blogpage?id=98afef2ce45f4fe9a4bc15a66d7ccb92|https://github.com/OpenBMB/CPM-Live/tree/master/cpm-live#model-checkpoints|https://github.com/OpenBMB/CPM-Live/tree/master/cpm-live|-
|11|PaLI|2022/9|Text/Vision|Google|3B , 15B , 17B|Multilingual|https://arxiv.org/abs/2209.06794|-|-|-
|12|BEiT-3|2022/8|Text/Vision|Microsoft|1.9B|English|https://arxiv.org/abs/2208.10442|https://huggingface.co/docs/transformers/main/model_doc/beit|https://github.com/microsoft/unilm/tree/master/beit|-
|13|Atlas|2022/8|Text|MetaENS, PSL University/University College LondonInria|3B , 11B|English|https://arxiv.org/abs/2208.03299|-|-|-
|14|GLM-130B|2022/8|Text|Tsinghua University/Zhipu.AI|130B|EnglishChinese|http://keg.cs.tsinghua.edu.cn/glm-130b/posts/glm-130b/|https://docs.google.com/forms/d/e/1FAIpQLSehr5Dh_i3TwACmFFi8QEgIVNYGmSPwV0GueIcsUev0NEfUug/viewform|https://github.com/THUDM/GLM-130B|-
|15|AlexaTM 20B|2022/8|Text|Amazon|20B|Multilingual|https://arxiv.org/abs/2208.01448|https://github.com/amazon-research/alexa-teacher-models|-|-
|16|FIM|2022/7|Code/Text|OpenAI|1.4B , 2.8B , 6.9B|English|https://arxiv.org/abs/2207.14255|-|-|-
|17|PanGu-Coder|2022/7|Code|Huawei|2.6B|-|https://arxiv.org/abs/2207.11280|-|-|-
|18|ESM-2|2022/7|Protein|Meta/New York University/Stanford University/MIT|3B , 15B|-|https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1|-|-|-
|19|BLOOM(BLOOM & Mt0/BLOOMZ)|2022/7|Text|BigScience|1.3B , 2.5B , 6.3B , 175B|Multilingual|https://bigscience.huggingface.co/blog/bloom|https://huggingface.co/bigscience/bloom/tree/main|https://github.com/huggingface/transformers/tree/main/src/transformers/models/bloom|-
|20|NLLB|2022/7|Text|MetaUC Berkeley/Johns Hopkins University|dense: 1.3B , 3.3B; MoE:54.5B|Multilingual|https://arxiv.org/abs/2207.04672|https://github.com/facebookresearch/fairseq/blob/nllb/README.md#multilingual-translation-models|https://github.com/facebookresearch/fairseq/blob/nllb/examples/nllb/modeling/README.md|-
|21|Minerva|2022/6|Text|Google|8B , 62B , 540B|English|https://arxiv.org/abs/2206.14858|-|-|-
|22|ProGen2|2022/6|Protein|Salesforce/Johns Hopkins University/Columbia University|2.7B , 6.4B|-|https://arxiv.org/pdf/2206.13517.pdf|https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-xlarge.tar.gz|https://github.com/salesforce/progen|-
|23|LIMoE|2022/6|Text/Vision|Google|5.6B|English|https://arxiv.org/abs/2206.02770|-|-|-
|24|YaLM|2022/6|Text|Yandex|100B|EnglishRussian|https://medium.com/yandex/yandex-publishes-yalm-100b-its-the-largest-gpt-like-neural-network-in-open-source-d1df53d0e9a6|https://github.com/yandex/YaLM-100B#downloading-checkpoint|https://github.com/yandex/YaLM-100B|-
|25|Parti|2022/6|Text/Vision|Google|3B , 20B|English|https://arxiv.org/abs/2206.10789|-|-|-
|26|GODEL|2022/6|Text|Microsoft/Columbia University|2.7B|English|https://arxiv.org/abs/2206.11309|https://github.com/Microsoft/GODEL#models|https://github.com/Microsoft/GODEL|-
|27|Unified-IO|2022/6|Text/Vision|AI2/University of Washington|2.8B|English|https://arxiv.org/abs/2206.08916|-|-|-
|28|AlexaTM|2022/6|Text|Amazon|2.68B , 9.9B|Multilingual|https://arxiv.org/abs/2206.07808|-|-|-
|29|SwinV2-MoE|2022/6|Vision|Microsoft|1B , 2B|-|https://arxiv.org/abs/2206.03382|-|https://github.com/microsoft/Swin-Transformer|-
|30|OBERT|2022/6|Text|OPPO|~1B|Chinese|https://blog.51cto.com/u_15273780/5440502|-|-|-
|31|CogVideo|2022/5|Text/Vision|Tsinghua University/BAAI|9.4B|Chinese|https://arxiv.org/abs/2205.15868|https://github.com/THUDM/CogVideo#download|https://github.com/THUDM/CogVideo|-
|32|Imagen|2022/5|Text/Vision|Google|7.6B|English|https://arxiv.org/abs/2205.11487|-|-|-
|33|ERNIE 3.0 Zeus|2022/5|Text|Baidu|~100B|Chinese|https://baijiahao.baidu.com/s?id=1733603775259242015&wfr=spider&for=pc|-|-|https://wenxin.baidu.com/younger/apiDetail?id=20006
|34|RankGen|2022/5|Text|University of Massachusetts Amherst/ Google|1.2B|English|https://arxiv.org/abs/2205.09726|https://huggingface.co/kalpeshk2011|https://github.com/martiansideofthemoon/rankgen|-
|35|Gato|2022/5|Text/Vision|DeepMind|1.2B|English|https://arxiv.org/abs/2205.06175|-|-|-
|36|HunYuan(混元)|2022/5|Text|Tencent|~10B|Chinese|http://ex.chinadaily.com.cn/exchange/partners/82/rss/channel/cn/columns/snl9a7/stories/WS628df605a3101c3ee7ad730e.html|-|-|-
|37|UL2|2022/5|Text|Google|20B|English|https://arxiv.org/abs/2205.05131|https://github.com/google-research/google-research/tree/master/ul2#checkpoints|https://github.com/google-research/t5x|-
|38|CoCa|2022/5|Text/Vision|Google|2.1B|English|https://arxiv.org/abs/2205.01917|-|-|-
|39|OPT|2022/5|Text|Meta|1.3B , 2.7B , 6.7B , 13B , 30B , 66B , 175B|English|https://arxiv.org/abs/2205.01068|https://github.com/facebookresearch/metaseq/tree/main/projects/OPT#pretrained-model-weights|https://github.com/facebookresearch/metaseq|-
|40|Flamingo|2022/4|Text/Vision|DeepMind|80B|English|https://arxiv.org/abs/2204.14198|-|-|-
|41|CogView2|2022/4|Text/Vision|Tsinghua University/ BAAI|6B|English/Chinese|https://arxiv.org/abs/2204.14217|https://model.baai.ac.cn/model-detail/100041|https://github.com/THUDM/CogView2|-
|42|mGPT|2022/4|Text|SberDevices/ HSE University/ AI Research Institute|1.3B , 13B|Multilingual|https://arxiv.org/abs/2204.07580|https://huggingface.co/sberbank-ai/mGPT|https://github.com/ai-forever/mgpt|-
|43|GPT-NeoX|2022/4|Text|EleutherAI|20B|English|https://arxiv.org/abs/2204.06745|https://github.com/EleutherAI/gpt-neox#download-links|https://github.com/EleutherAI/gpt-neox|-
|44|NOOR|2022/4|Text|Technology Innovation Institute|10B|Arabic|https://www.tii.ae/news/technology-innovation-institute-announces-launch-noor-worlds-largest-arabic-nlp-model|-|-|-
|45|METRO-LM|2022/4|Text|Microsoft|5.4B|English|https://arxiv.org/abs/2204.06644|-|-|-
|46|DALL-E 2|2022/4|Text/Vision|OpenAI|6.5B|English|https://arxiv.org/abs/2204.06125|-|-|https://labs.openai.com/waitlist
|47|InCoder|2022/4|Code|Facebook/University of Washington/UC Berkeley/TTIC/CMU|1.3B , 6.7B|-|https://arxiv.org/abs/2204.05999|https://sites.google.com/view/incoder-code-models|https://github.com/dpfried/incoder/blob/main/README.md|-
|48|PaLM|2022/4|Text|Google|8B , 62B , 540B|English|https://arxiv.org/abs/2204.02311|-|-|-
|49|Chinchilla|2022/3|Text|DeepMind|70B|English|https://arxiv.org/abs/2203.15556|-|-|-
|50|Benetnasch(瑶光)|2022/3|Text|Singularity AI|~10B|Chinese|https://vr.sina.com.cn/2022-03-28/doc-imcwiwss8619202.shtml|-|-|https://openapi.singularity-ai.com/index.html#/
|51|CodeGen|2022/3|Code|Salesforce|2.7B , 6.1B , 16.1B|-|https://arxiv.org/abs/2203.13474|https://github.com/salesforce/CodeGen#setup|https://github.com/salesforce/CodeGen|-
|52|EVA-2|2022/3|Text|Tsinghua University/ BAAI/ York University|2.8B|Chinese|https://arxiv.org/abs/2203.09313|https://wudaoai.cn/model/detail/EVA#download|https://github.com/thu-coai/EVA/|-
|53|AlphaCode|2022/3|Code|DeepMind|1.1B , 2.8B , 8.7B , 41.1B|-|https://arxiv.org/abs/2203.07814|-|-|-
|54|InstructGPT|2022/3|Text|OpenAI|1.3B , 6B , 175B|English|https://arxiv.org/abs/2203.02155|-|-|-
|55|DeepNet|2022/3|Text|Microsoft|3.2B|English|https://arxiv.org/abs/2203.00555|-|-|-
|56|PolyCoder|2022/2|Code|CMU|2.7B|-|https://arxiv.org/abs/2202.13169|https://github.com/VHellendoorn/Code-LMs#available-models|https://github.com/VHellendoorn/Code-LMs|-
|57|SEER|2022/2|Vision|MetaInria|1.5B , 10B|-|https://arxiv.org/abs/2202.08360|https://github.com/facebookresearch/vissl/tree/main/projects/SEER#pretrained-models-weights|https://github.com/facebookresearch/vissl/tree/main/projects/SEER|-
|58|Cedille|2022/2|Text|Cedille AI|6B|French|https://arxiv.org/abs/2202.03371|https://github.com/coteries/cedille-ai#mesh-transformer|https://github.com/coteries/cedille-ai#why-is-this-repository-empty|https://app.cedille.ai/
|59|Megatron-Turing NLG|2022/1|Text|Microsoft/ NVIDIA|530B|English|https://arxiv.org/abs/2201.11990|-|-|-
|60|LaMDA|2022/1|Text|Google|2B , 8B , 137B|English|https://arxiv.org/abs/2201.08239|-|-|-
|61|CM3|2022/1|Text/Vision|Facebook|2.7B , 13B|English|https://arxiv.org/abs/2201.07520|-|-|-
|62|ERNIE-ViLG|2021/12|Text/Vision|Baidu|10B|Chinese|https://arxiv.org/pdf/2112.15283.pdf|-|-|https://wenxin.baidu.com/younger/apiDetail?id=20008
|63|ERNIE 3.0 Titan |2021/12|Text|Peng Cheng Laboratory/ Baidu|260B|Chinese|https://arxiv.org/abs/2112.12731|-|-|-
|64|XGLM|2021/12|Text|Meta|1.7B , 2.9B , 7.5B|Multilingual|https://arxiv.org/abs/2112.10668|https://github.com/facebookresearch/fairseq/tree/main/examples/xglm#pre-trained-models|https://github.com/facebookresearch/fairseq/tree/main/examples/xglm|-
|65|MOE LM|2021/12|Text|Meta|dense: 1.3B , 2.7B , 6.7B , 13B; MoE:15B , 52B , 207B , 1100B|English|https://arxiv.org/abs/2112.10684|https://github.com/facebookresearch/fairseq/tree/main/examples/moe_lm#pre-trained-models|https://github.com/facebookresearch/fairseq/tree/main/examples/moe_lm|-
|66|GLIDE|2021/12|Text/Vision|OpenAI|5B|English|https://arxiv.org/abs/2112.10741|-|https://github.com/openai/glide-text2im|-
|67|WebGPT|2021/12|Text|OpenAI|13B , 175B|English|https://arxiv.org/abs/2112.09332|-|-|-
|68|LongT5|2021/12|Text|Google|3B|English|https://arxiv.org/abs/2112.07916|https://github.com/google-research/longt5#released-model-checkpoints|https://github.com/google-research/longt5|-
|69|GLaM|2021/12|Text|Google|dense: 1.7B , 8.7B , 137B; MoE:1.9B , 20B , 27B , 53B , 105B , 143B , 1200B|English|https://arxiv.org/abs/2112.06905|-|-|-
|70|Retro |2021/12|Text|DeepMind|1.5B , 7.5B|English|https://arxiv.org/abs/2112.04426|-|-|-
|71|Gopher|2021/12|Text|DeepMind|1.4B , 7.1B , 280B|English|https://storage.googleapis.com/deepmind-media/research/language-research/Training%20Gopher.pdf|-|-|-
|72|CodeParrot|2021/12|Code|Huggingface|1.5B|-|https://huggingface.co/blog/codeparrot|https://huggingface.co/codeparrot/codeparrot|https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot|-
|73|GPT-JT|2021/11|Text|Together|6B|English|https://www.together.xyz/blog/releasing-v1-of-gpt-jt-powered-by-open-source-ai|https://huggingface.co/togethercomputer/GPT-JT-6B-v1|https://huggingface.co/togethercomputer/GPT-JT-6B-v1|-
|74|Zhouwenwang(周文王)|2021/11|Text|IDEA|1.3B|Chinese|https://idea.edu.cn/fengshenbang-lm.html|https://huggingface.co/IDEA-CCNL/Zhouwenwang-Unified-1.3B|https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/models/roformer|-
|75|Yuyuan(余元)|2021/11|Text|IDEA|3.5B|Chinese|https://idea.edu.cn/fengshenbang-lm.html|https://huggingface.co/IDEA-CCNL/YuyuanQA-GPT2-3.5B|https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/wenzhong_qa|-
|76|Wenzhong(闻仲)|2021/11|Text|IDEA|3.5B|Chinese|https://idea.edu.cn/fengshenbang-lm.html|https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-3.5B|https://fengshenbang-doc.readthedocs.io/zh/latest/docs/%E9%97%BB%E4%BB%B2%E7%B3%BB%E5%88%97/Wenzhong-GPT2-3.5B.html|-
|77|ExT5|2021/11|Text|Google|3B , 11B|English|https://arxiv.org/abs/2111.10952|-|-|-
|78|Erlangshen(二郎神)|2021/11|Text|IDEA|1.3B|Chinese|https://idea.edu.cn/fengshenbang-lm.html|https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B|https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_erlangshen|-
|79|Bigan(比干)|2021/11|Text|IDEA|1.1B|Chinese|https://idea.edu.cn/fengshenbang-lm.html|https://huggingface.co/IDEA-CCNL/Bigan-Transformer-XL-denoise-1.1B|https://fengshenbang-doc.readthedocs.io/zh/latest/docs/%E6%AF%94%E5%B9%B2%E7%B3%BB%E5%88%97/Bigan-Transformer-XL-denoise-1.1B.html|-
|80|BASIC|2021/11|Vision|GoogleMIT|3B|-|https://arxiv.org/abs/2111.10050|-|-|-
|81|Swin Transformer V2|2021/11|Vision|Microsoft|3B|-|https://arxiv.org/abs/2111.09883|-|https://github.com/microsoft/Swin-Transformer|-
|82|PERKS|2021/11|Text|Kuaishou|~1B|Chinese|https://github.com/KuaiSearchPERKS/PERKS/|-|-|-
|83|M-CTC-T|2021/10|Audio|Facebook/ McGill University/ Mila|1.06B|Multilingual|https://arxiv.org/abs/2111.00161|https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl#inference|https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl|-
|84|TI-NLP|2021/10|Text|Tencent|~10B|Chinese|https://www.iheima.com/article-325531.html|-|-|-
|85|T0|2021/10|Text|BigScience|3B , 11B|English|https://arxiv.org/abs/2110.08207|https://github.com/bigscience-workshop/t-zero#released-checkpoints|https://github.com/bigscience-workshop/t-zero|-
|86|MixQG|2021/10|Text|Salesforce|3B|English|https://arxiv.org/abs/2110.08175|https://github.com/salesforce/QGen/tree/main/MixQG#released-model-checkpoints|https://github.com/salesforce/QGen/tree/main/MixQG|-
|87|ShenNonG(神农)|2021/10|Text|Tencent|~1B|Chinese|https://mp.weixin.qq.com/s/CavGiy1Rz0MJVtcxXdSn0A|-|-|-
|88|Mengzi(孟子)|2021/10|Text|Shanghai Jiao Tong University/ Beijing Institute of Technology/ Beijing Jiaotong University/ Peking University/ Langboat Technology|1B|Chinese|https://arxiv.org/abs/2110.06696|-|https://github.com/Langboat/Mengzi|-
|89|Yuan(源) 1.0|2021/10|Text|Inspur|13B , 245B|Chinese|https://arxiv.org/abs/2110.04725|-|-|https://air.inspur.com/home
|90|M6-10T|2021/10|Text/Vision|Alibaba|dense: 1.4B; MoE:10000B|Chinese|https://arxiv.org/abs/2110.03888|-|-|-
|91|Zidong.Taichu(紫东太初)|2021/9|Audio/Text/Vision|Institute of Automation|~1B , ~10B , ~100B|Chinese|http://www.ia.cas.cn/xwzx/kydt/202109/t20210927_6215538.html|https://gitee.com/zidongtaichu/multi-modal-models|https://gitee.com/zidongtaichu/multi-modal-models|-
|92|Z-code M3|2021/9|Text|Microsoft|1.8B , 3B , 5.5B , 10B , 20B|Multilingual|https://arxiv.org/abs/2109.10465|-|-|-
|93|T5-Efficient|2021/9|Text|Google/DeepMind|3B , 11B , 30B|English|https://arxiv.org/abs/2109.10686|https://github.com/google-research/google-research/tree/master/scaling_transformers#download-checkpoints|https://github.com/google-research/text-to-text-transfer-transformer|-
|94|PLATO-XL|2021/9|Text|Baidu|11B|English|https://arxiv.org/abs/2109.09519|https://github.com/PaddlePaddle/Knover/blob/develop/projects/PLATO-XL/README.md#pre-trained-dialogue-generation-model|https://github.com/PaddlePaddle/Knover/|-
|95|ShenZhou(神舟)|2021/9|Text|Tencent|~10B|Chinese|https://mp.weixin.qq.com/s/PODShmOo0tg9cmchNhzvtw|-|-|-
|96|CoAtNet|2021/9|Vision|Google|1.47B , 2.44B|English|https://arxiv.org/abs/2106.04803|-|-|-
|97|HyperCLOVA|2021/9|Text|NAVER/ Search Solutions|1.3B , 6.9B , 13B , 39B , 82B , 204B|Korean|https://arxiv.org/abs/2109.04650|-|-|-
|98|Macaw|2021/9|Text|AI2|3B , 11B|English|https://arxiv.org/abs/2109.02593|https://github.com/allenai/macaw#available-models|https://github.com/allenai/macaw|-
|99|FLAN|2021/9|Text|Google|137B|English|https://arxiv.org/abs/2109.01652|-|https://github.com/google-research/flan|-
|100|ProteinLM|2021/8|Protein|Tsinghua University/ BAAI/ Tencent|3B|-|https://arxiv.org/abs/2108.07435|https://github.com/THUDM/ProteinLM#download-proteinlm|https://github.com/THUDM/ProteinLM|-
|101|Jurassic-1(Grande, Jumbo)|2021/8|Text|AI21 Labs|7.5B , 17B , 178B|English|https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf|-|-|https://studio.ai21.com/playground
|102|baseline-1.5B|2021/8|Text|Cohere|1.5B|English|https://arxiv.org/abs/2108.07790|-|-|-
|103|EVA|2021/8|Text|Tsinghua University/ BAAI|2.8B|Chinese|https://arxiv.org/abs/2108.01547|https://wudaoai.cn/model/detail/EVA#download|https://github.com/thu-coai/EVA/|-
|104|BlenderBot 2|2021/7|Text|Facebook|2.7B|English|https://ai.facebook.com/blog/blender-bot-2-an-open-source-chatbot-that-builds-long-term-memory-and-searches-the-internet/|https://parl.ai/projects/blenderbot2/|https://parl.ai/projects/blenderbot2/|-
|105|ProtTrans|2021/7|Protein|Technical University of Munich/ Med AI Technology/ Google/ NVIDIA/ Seoul National University/ Oak Ridge National Laboratory|3B , 11B|-|https://doi.org/10.1109/TPAMI.2021.3095381|https://github.com/agemagician/ProtTrans#%EF%B8%8F-models-availability|https://github.com/agemagician/ProtTrans|-
|106|Codex|2021/7|Code|OpenAI|2.5B , 12B|-|https://arxiv.org/abs/2107.03374|-|-|http://beta.openai.com/codex-waitlist
|107|ERNIE 3.0|2021/7|Text|Baidu|10B|Chinese|https://arxiv.org/abs/2107.02137|-|-|-
|108|CPM-2|2021/6|Text|Tsinghua University/ BAAI|dense: 11B; MoE:198B|Chinese|https://arxiv.org/abs/2106.10715|https://github.com/OpenBMB/ModelCenter#supported-models|https://github.com/OpenBMB/ModelCenter|-
|109|Motian(摩天)|2021/6|Text|Tencent|~1B|Chinese|https://mp.weixin.qq.com/s/HQL0Hk49UR6kVNtrvcXEGA|-|-|-
|110|V-MOE|2021/6|Vision|Google|14.7B|-|https://arxiv.org/abs/2106.05974|-|-|-
|111|GPT-J|2021/6|Text|EleutherAI|6B|English|https://www.infoq.com/news/2021/07/eleutherai-gpt-j/|https://github.com/kingoflolz/mesh-transformer-jax/#links|https://github.com/kingoflolz/mesh-transformer-jax/|-
|112|ViT|2021/6|Vision|Google|1B , 1.8B|-|https://arxiv.org/abs/2106.04560|-|https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/scaling_laws/train_vit_g.py|-
|113|Wudao(悟道) 2.0|2021/6|Text/Vision|BAAI|1750B|EnglishChinese|https://www.sohu.com/na/469857971_473283|-|-|-
|114|ByT5|2021/5|Text|Google|1.2B , 3.7B , 13B|Multilingual|https://arxiv.org/abs/2105.13626|https://github.com/google-research/byt5#released-model-checkpoints|https://github.com/google-research/byt5|-
|115|CogView|2021/5|Text/Vision|Tsinghua University/ Alibaba/ BAAI|4B|Chinese|https://arxiv.org/abs/2204.14217|https://github.com/THUDM/CogView#download|https://github.com/THUDM/CogView|-
|116|QAConv|2021/5|Text|Salesforce/ HKUST|3B|English|https://arxiv.org/abs/2105.06912|https://github.com/salesforce/QAConv#trained-models|https://github.com/salesforce/QAConv|-
|117|XLM-R |2021/5|Text|Facebook|3.5B , 10.7B|Multilingual|https://arxiv.org/abs/2105.00572|https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr#pre-trained-models|https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr|-
|118|PanGu(盘古)-α|2021/4|Text|Peng Cheng Laboratory/ Huawei|2.6B , 13B , 200B|Chinese|https://arxiv.org/abs/2104.12369|https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/PanGu-%CE%B1#%E6%A8%A1%E5%9E%8B%E4%B8%8B%E8%BD%BD|https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/PanGu-%CE%B1|https://pangu-alpha.openi.org.cn/
|119|PLUG|2021/4|Text|Alibaba|27B|Chinese|https://www.infoq.cn/article/efiho75sqsvqlvftruke|https://www.alice-mind.com/portal#/|https://github.com/alibaba/AliceMind/tree/main/PLUG|-
|120|GPT-Neo|2021/3|Text|EleutherAI|1.3B , 2.7B|English|https://venturebeat.com/2021/05/15/gpt-3s-free-alternative-gpt-neo-is-something-to-be-excited-about/|https://github.com/EleutherAI/gpt-neo/#pretrained-models|https://github.com/EleutherAI/gpt-neo/|-
|121|GLM|2021/3|Text|Tsinghua University/ BAAI/ MIT/ Shanghai Qi Zhi Institute|10B|EnglishChinese|https://arxiv.org/abs/2103.10360|https://github.com/THUDM/GLM#pretrained-models|https://github.com/THUDM/GLM|-
|122|Chinese-Transformer-XL|2021/3|Text|Tsinghua University|2.9B|Chinese|https://wudaoai.cn/model/detail/Transformer-XL|http://dorc-model-team.ks3-cn-beijing.ksyun.com/ren-zhi/my-model/mp_rank_00_model_states.pt|https://github.com/THUDM/Chinese-Transformer-XL|-
|123|BriVL|2021/3|Text/Vision|Renmin University of ChinaInstitute of Computing Technology|1B|Chinese|https://arxiv.org/abs/2103.06561|https://github.com/BAAI-WuDao/BriVL#%E4%B8%8B%E8%BD%BD%E4%B8%93%E5%8C%BA|https://github.com/BAAI-WuDao/BriVL|-
|124|M6|2021/3|Text/Vision|AlibabaTsinghua University|10B , 100B|Chinese|https://arxiv.org/abs/2103.00823|-|-|-
|125|DALL-E|2021/2|Text/Vision|OpenAI|12B|English|https://arxiv.org/abs/2102.12092|-|https://github.com/openai/dall-e|-
|126|Switch Transformers|2021/1|Text|Google|7B , 26B , 395B , 1571B|English|https://arxiv.org/abs/2101.03961|https://github.com/google-research/t5x/blob/main/docs/models.md#mixture-of-experts-moe-checkpoints|https://github.com/google-research/t5x|-
|127|CPM-1|2020/12|Text|Tsinghua University/ BAAI|2.6B|Chinese|https://arxiv.org/abs/2012.00413|https://github.com/OpenBMB/ModelCenter#supported-models|https://github.com/OpenBMB/ModelCenter|-
|128|mT5|2020/10|Text|Google|1.2B , 3.7B , 13B|Multilingual|https://arxiv.org/abs/2010.11934|https://github.com/google-research/multilingual-t5#released-model-checkpoints|https://github.com/google-research/multilingual-t5|-
|129|M2M-100|2020/10|Text|Facebook|1.2B , 12B|Multilingual|https://arxiv.org/abs/2010.11125|https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_100#trained-models|https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_100|-
|130|BlenderBot 3|2020/8|Text|Meta/ Mila/ McGill University|3B , 30B , 175B|English|https://arxiv.org/abs/2208.03188|https://github.com/facebookresearch/ParlAI/tree/main/projects/bb3|https://github.com/facebookresearch/ParlAI/tree/main/projects/bb3|-
|131|PLATO-2|2020/6|Text|Baidu|1.6B|English|https://arxiv.org/abs/2006.16779|https://github.com/PaddlePaddle/Knover/blob/develop/projects/PLATO-2/README.md#pre-trained-dialogue-generation-model|https://github.com/PaddlePaddle/Knover/|-
|132|GShard|2020/6|Text|Google|12.5B , 37B , 50B , 150B , 200B , 600B|Multilingual|https://arxiv.org/abs/2006.16668|-|-|-
|133|iGPT|2020/6|Vision|OpenAI|1.3B , 6.8B|-|https://proceedings.mlr.press/v119/chen20s.html|-|-|-
|134|DeBERTa v2|2020/6|Text|Microsoft|1.5B|English|https://arxiv.org/abs/2006.03654|https://huggingface.co/microsoft/deberta-v2-xxlarge|https://github.com/microsoft/DeBERTa|-
|135|GPT-3|2020/5|Text|OpenAI|1.3B , 2.7B , 6.7B , 13B , 175B|English|https://arxiv.org/abs/2005.14165|-|-|https://openai.com/api/
|136|BlenderBot 1|2020/4|Text|Facebook|2.7B , 9.4B|English|https://arxiv.org/abs/2004.13637|https://parl.ai/projects/recipes/|https://parl.ai/projects/recipes/|-
|137|ProGen|2020/3|Protein|Salesforce/ Stanford University|1.2B|-|https://arxiv.org/abs/2004.03497|-|-|-
|138|Turing NLG|2020/2|Text|Microsoft|17B|English|https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/|-|-|-
|139|Meena|2020/1|Text|Google|2.6B|English|https://arxiv.org/abs/2001.09977|-|-|-
|140|T5|2019/10|Text|Google|3B , 11B|English|https://arxiv.org/abs/1910.10683|https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints|https://github.com/google-research/text-to-text-transfer-transformer|-
|141|Megatron-LM|2019/9|Text|NVIDIA|1.2B , 2.5B , 4.2B , 8.3B|English|https://arxiv.org/abs/1909.08053|-|https://github.com/NVIDIA/Megatron-LM|-
|142|CTRL|2019/9|Text|Salesforce|1.63B|English|https://arxiv.org/abs/1909.05858|https://console.cloud.google.com/storage/browser/sf-ctrl;tab=objects?prefix=&forceOnObjectsSortingFiltering=false|https://github.com/salesforce/ctrl|-
|143|GPT-2|2019/2|Text|OpenAI|1.5B|English|https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf|https://github.com/openai/gpt-2|https://github.com/openai/gpt-2|-
|144|Sparsely-Gate MOE|2017/1|Text|Jagiellonian University/ Google|8.7B , 137B|Multilingual|https://arxiv.org/abs/1701.06538|-||
|145|LLaMA|2023/02|NLP|Meta|7B/13B/33B/|en/|https://arxiv.org/abs/2302.13971|https://github.com/facebookresearch/llama/blob/main/download.sh|https://github.com/facebookresearch/llama/tree/main/llama|
|146|ChatGLM|2023/03|NLP|THUDM|6B|zh/en|https://chatglm.cn/blog|https://huggingface.co/THUDM/chatglm-6b|https://huggingface.co/THUDM/chatglm-6b|
|147|Open Flamingo|2023/03|CV/NLP|laion.ai|9B|en|https://laion.ai/blog/open-flamingo/|https://huggingface.co/openflamingo/OpenFlamingo-9B|https://github.com/mlfoundations/open_flamingo|https://7164d2142d11.ngrok.app/
|148|Alpaca-7B|2023/03|NLP|Stanford|7B/13B(Not Open)|en/ multiligual|https://crfm.stanford.edu/2023/03/13/alpaca.html|https://huggingface.co/tatsu-lab/alpaca-7b-wdiff/tree/main|https://github.com/tatsu-lab/stanford_alpaca/blob/main/train.py|
|149|Vicuna|2023/03|NLP|The Vicuna|7B/13B|en/|https://lmsys.org/blog/2023-03-30-vicuna/|https://github.com/lm-sys/FastChat#vicuna-weights|https://github.com/lm-sys/FastChat/blob/main/scripts/train_vicuna_7b.sh|https://chat.lmsys.org/
|150|FastChat-T5|2023/04|NLP|The Vicuna|3B|en|https://github.com/lm-sys/FastChat#FastChat-T5|https://huggingface.co/lmsys/fastchat-t5-3b-v1.0|https://huggingface.co/lmsys/fastchat-t5-3b-v1.0|
|151|Pythia|2023/04|NLP|EleutherAI|70M/160M/410M/1B/1.4B/2.8B/6.9B/12B|en|https://arxiv.org/pdf/2304.01373.pdf|https://github.com/EleutherAI/pythia/tree/main|https://github.com/EleutherAI/pythia/tree/main/models|
|152|StableLM-Tuned-Alpha|2023/04|NLP|Stability AI|3B/7B|en|https://github.com/stability-AI/stableLM|https://huggingface.co/stabilityai|https://huggingface.co/stabilityai|
|153|Stable-vicuna-13b-delta|2023/04|NLP|CarperAI|13B|en/|https://stability.ai/blog/stablevicuna-open-source-rlhf-chatbot|https://huggingface.co/CarperAI/stable-vicuna-13b-delta/tree/main|https://huggingface.co/CarperAI/stable-vicuna-13b-delta|https://huggingface.co/CarperAI/stable-vicuna-13b-delta
|154|Dolly|2023/04|NLP|Databricks|3B/6B/7B/12B|en|https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm|https://huggingface.co/databricks|https://huggingface.co/databricks|
|155|MPT|2023/05|NLP|Mosaic ML|7B|en|https://the-decoder.com/mpt-7b-the-best-open-source-llm-available-for-commercial-use/|https://huggingface.co/mosaicml|https://huggingface.co/mosaicml|
|156|Dromedary|2023/05|NLP|MIT-IBM|65B|en/|https://arxiv.org/pdf/2305.03047.pdf|https://huggingface.co/zhiqings/dromedary-65b-lora-delta-v0|https://github.com/IBM/Dromedary|
|157|Visualglm-6b|2023/05|CV/NLP|THUDM|6B|zh/en|https://github.com/THUDM/VisualGLM-6B|https://huggingface.co/THUDM/visualglm-6b|https://github.com/THUDM/VisualGLM-6B|https://huggingface.co/spaces/THUDM/visualglm-6b
|158|Alpaca.cpp|2023/03|NLP||7B|en|https://github.com/antimatter15/alpaca.cpp|||
|159|Alpaca-LoRA|2023/03|NLP||7B||https://github.com/tloen/alpaca-lora|||
|160|Baize|2023/03|NLP|UCSD/ Sun Yat-sen University|7B/13B/30B||https://arxiv.org/abs/2304.01196|https://huggingface.co/spaces/project-baize/chat-with-baize|https://github.com/project-baize/baize-chatbot|
|161|BELLE|2023/04|NLP|链家(lianjia tech)|7B/13B|zh/en|||https://github.com/LianjiaTech/BELLE|
|162|BLOOM-LoRA|2023/03|NLP||7B|Multilingual||https://huggingface.co/LinhDuong/bloom-7b1-lora-codealpaca20k|https://github.com/linhduongtuan/BLOOM-LORA|
|163|Cabrita|2023/03|NLP|22-hours|| portuguese||https://huggingface.co/22h/cabrita-lora-v0-1|https://github.com/22-hours/cabrita|
|164|Camel|2023/03|NLP|camel-ai.org(KAUST)|||https://ghli.org/camel.pdf||https://github.com/camel-ai/camel|
|165|Cerebras-GPT|2023/04|NLP|Cerebras|111M, 256M, 590M, 1.3B, 2.7B, 6.7B, and 13B|Multilingual|https://arxiv.org/abs/2304.03208 (https://www.cerebras.net/blog/cerebras-gpt-a-family-of-open-compute-efficient-large-language-models)|https://huggingface.co/cerebras/Cerebras-GPT-13B||
|166|RWKV|2022/04|NLP|BlinkDL|0.1B/0.4B/1.5B/3B/7B/14B||https://arxiv.org/abs/2305.13048||https://github.com/BlinkDL/RWKV-LM|
|167|ChatRWKV|2023/04|NLP|BlinkDL|||||https://github.com/BlinkDL/ChatRWKV|
|168|Chimera|2023/04|NLP|FreedomAI(CUHK)|7B/13B|Latin||https://huggingface.co/FreedomIntelligence|https://github.com/FreedomIntelligence/LLMZoo|
|169|Phoenix|2023/04|NLP|FreedomAI(CUHK)|7B|Multilingual||https://huggingface.co/FreedomIntelligence|https://github.com/FreedomIntelligence/LLMZoo|
|170|HuatuoGPT(CAMEL)|2023/04|NLP|FreedomAI(CUHK)|7B|Multilingual||https://huggingface.co/FreedomIntelligence|https://github.com/FreedomIntelligence/LLMZoo|
|171|Chinese-Vicuna|2023/04|NLP||7B/13B|Chinese||https://huggingface.co/Facico/Chinese-Vicuna-lora-7b-3epoch-belle-and-guanaco|https://github.com/Facico/Chinese-Vicuna|
|172|Claude|2023/03|NLP|anthropic|~6.2B|Multilingual||||https://www.anthropic.com/product
|173|CPM-Bee|2023/05|NLP|OpenBMB|10B|EN/ZH||https://huggingface.co/openbmb/cpm-bee-10b/tree/main|https://github.com/OpenBMB/CPM-Bee|
|174|Dolly 2.0|2023/04|NLP|EleutherAI|2.8B/6.9B/12B|Multilingual|https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm|https://huggingface.co/databricks/dolly-v2-12b|https://github.com/databrickslabs/dolly#getting-started-with-response-generation|
|175|Flan-Alpaca(Base/large/XL/XXL/GPT4-XL)/Flan-GPT4ALL-XL/Flan-ShareGPT-XL|2023/03|NLP|Deep Cognition and Language Research (DeCLaRe) Lab|0.22B/0.77B/3B/11B||https://huggingface.co/declare-lab|https://huggingface.co/declare-lab|https://github.com/declare-lab/flan-alpaca|
|176|Flan-PaLM|2022/10|NLP|Google Research|540B||https://arxiv.org/pdf/2210.11416.pdf||https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints|
|177|Flan-UL2|2023/03|NLP|Google Research|20B|Multilingual|https://arxiv.org/pdf/2205.05131.pdf|https://huggingface.co/google/flan-ul2||
|178|GALPACA|2022/11|NLP|Georgia Tech Research Institute/ Meta AI|125M/1.3B/6.7B/30B/120B||https://galactica.org/static/paper.pdf|https://huggingface.co/GeorgiaTechResearchInstitute||
|179|GPT 4|2023/03|NLP|OpenAI|~1000B or more|Multilingual|https://arxiv.org/abs/2303.08774|||https://openai.com/research/gpt-4
|180|GPT4All|2023/03|NLP|Nomic AI|||||https://github.com/nomic-ai/gpt4all|https://gpt4all.io/index.html
|181|GPTQ-for-LLaMA|2023/03|NLP||7B/13B/33B/65B||||https://github.com/qwopqwop200/GPTQ-for-LLaMa|
|182|h2oGPT|2023/03|NLP|h2o.ai|12B|||https://huggingface.co/spaces/h2oai/h2ogpt-chatbot|https://github.com/h2oai/h2ogpt|
|183|HuggingChat||NLP|Huggingface|30B|||https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor||
|184|Koala|2023/04|NLP|berkeley AI research (BAIR)|13B||https://bair.berkeley.edu/blog/2023/04/03/koala/|||
|185|Llama-X|2023/03|NLP||7B||||https://github.com/AetherCortex/Llama-X|
|186|Open-Assistant|2023/04|NLP|LAION AI|||https://projects.laion.ai/Open-Assistant/blog/2023/04/15/open-assistant-released|open-assistant.io/chat|https://github.com/LAION-AI/Open-Assistant|open-assistant.io/chat
|187|OpenChatKit||NLP|togethercomputer|7B||https://github.com/togethercomputer/OpenChatKit|||
|188|PALM2|2023/05|NLP|Google|||https://blog.google/technology/ai/google-palm-2-ai-large-language-model/|||https://developers.generativeai.google/products/palm
|189|Palmyra|2023/03|NLP|Writer|3B/5B|||https://huggingface.co/Writer/palmyra-base||https://writer.com/product/api/
|190|RedPajama|2023/04|NLP|Together Computer|3B/7B|EN||https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1|https://github.com/togethercomputer/RedPajama-Data|
|191|StackLLaMA|2023/04|NLP|Huggingface|7B||https://huggingface.co/blog/stackllama|||
|192|StarCoder||NLP|Huggingface||||||
|193|falcon-40b|2023/05|NLP|Technology Innovation Institute|40B|Multilingual||https://huggingface.co/tiiuae/falcon-40b||
|194|文心一言|2023/03|NLP|baidu|260B||https://yiyan.baidu.com|||
|195|通义千问|2023/04|NLP|alibaba|1200B||https://tongyi.aliyun.com/|||
|196|盘古β|2020/04|NLP|huawei||||||
|197|飞书“My AI”|2023/04|NLP|飞书(ByteDance)||||||
|198|言犀-ChatJD|2023/02|NLP|JD|~100B||https://yanxi.jd.com/|||
|199|知海图Al|2023/04|NLP|zhihu & modelbest|~1B|zh||||
|200|360智脑|2023/05|NLP|360|~10B||https://ai.360.cn/|||
|201|伏羲——预训练大模型“玉言”|2023/01|NLP|netease|11B||https://fuxi.163.com/|||
|202|天工|2023/04|NLP|昆仑万维 & 奇点智源|~100B||https://tiangong.kunlun.com/|||
|203|天燕大模型AiLMe|2023/04|NLP|APUS|~100B||http://apusai.com/|||
|204|日日新SenseNova/商量|2023/04|NLP|sensetime|180B||https://techday.sensetime.com/list|||
|205|讯飞星火|2023/05|NLP|科大讯飞|~50B||https://xinghuo.xfyun.cn/|||
|206|序列猴子|2023/04|NLP|出门问问|less than 100B||https://openapi.mobvoi.com/largemodel-introduce|||
|207|Mchat(孟子)|2023/03(2021/07)|NLP|澜舟科技|~1B||https://www.langboat.com/portal/mengzi-model|||
|208|自动驾驶生成式大模型DriveGPT|2023/04|NLP|毫末科技|120B||https://www.haomo.ai/|||
|209|魔力写作||NLP|竹间智能||||||
|210|Glow(基于自研大模型的AI虚拟聊天社交软件)||NLP|北京稀宇科技有限公司||||||
|211|曹植|2023/03|NLP|达观数据|50B||http://www.datagrand.com/products/aigc/|||
|212|子曰|2023/05|NLP|网易有道||||||
|213|MathGPT|2023/05|NLP|好未来||||||
|214|对话式大型语言模型MOSS|2023/02|NLP|复旦大学|~20B|||https://huggingface.co/fnlp/moss-moon-003-base|https://github.com/OpenLMLab/MOSS|
|215|封神榜系列-姜子牙大模型|2023/05|NLP|IDEA|7B/13B|||https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1/discussions/17|https://github.com/IDEA-CCNL/Fengshenbang-LM|
|216|天气预报大模型“风乌”|2023/04|NLP|上海人工智能实验室/中国科学技术大学/上海交通大学/南京信息工程大学/中国科学院大气物理研究所/上海中心气象台|||https://arxiv.org/abs/2304.02948|||
|217|Firefly(流萤)|2023/03|NLP||1.4B/2.6B|ZH||https://huggingface.co/YeungNLP/firefly-2b6|https://github.com/yangjianxin1/Firefly|



280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
## 致谢名单

感谢以下各位贡献者的大力支持与参与!

| 姓名 | 职务信息 |
| :-- | :-- |
| 余跃 | 启智社区运营中心主任 |
| 唐小引 | CSDN&《新程序员》执行总编 |
| 王文广 | 达观数据副总裁 |
| 王溯 | OpenI启智社区生态拓展部部长 |

## 欢迎与我联系

扫码添加时,请备注您的姓名+公司职位。

<img src="https://img-blog.csdnimg.cn/3b20251d39b543cb8571c0c55bfa9dbd.png" width = "394" height = "460" alt="联系信息" align=center />