提交 a93251ae 编写于 作者: B bernard

Merge branch 'master' of https://github.com/RT-Thread/rt-thread

......@@ -43,7 +43,8 @@ void rtthread_startup(void)
/* initialize timer */
rt_system_timer_init();
/* initialize soft timer thread */
/* initialize timer */
rt_system_timer_init();
rt_system_timer_thread_init();
/* initialize application */
......
......@@ -108,12 +108,8 @@
#if _MAX_SS != 512 && _MAX_SS != 1024 && _MAX_SS != 2048 && _MAX_SS != 4096
#error Wrong sector size.
#endif
#if _MAX_SS != 512
#define SS(fs) ((fs)->ssize) /* Multiple sector size */
#else
#define SS(fs) 512U /* Fixed sector size */
#endif
#define SS(fs) ((fs)->ssize) /* sector size */
/* Reentrancy related */
#if _FS_REENTRANT
......@@ -2058,10 +2054,11 @@ FRESULT chk_mounted ( /* FR_OK(0): successful, !=0: any error occurred */
stat = disk_initialize(fs->drv); /* Initialize low level disk I/O layer */
if (stat & STA_NOINIT) /* Check if the initialization succeeded */
return FR_NOT_READY; /* Failed to initialize due to no media or hard error */
#if _MAX_SS != 512 /* Get disk sector size (variable sector size cfg only) */
/* Get disk sector size (variable sector size cfg only) */
if (disk_ioctl(fs->drv, GET_SECTOR_SIZE, &fs->ssize) != RES_OK)
return FR_DISK_ERR;
#endif
#if !_FS_READONLY
if (chk_wp && (stat & STA_PROTECT)) /* Check disk write protection if needed */
return FR_WRITE_PROTECTED;
......@@ -3601,10 +3598,10 @@ FRESULT f_mkfs (
stat = disk_initialize(drv);
if (stat & STA_NOINIT) return FR_NOT_READY;
if (stat & STA_PROTECT) return FR_WRITE_PROTECTED;
#if _MAX_SS != 512 /* Get disk sector size */
/* Get disk sector size */
if (disk_ioctl(drv, GET_SECTOR_SIZE, &SS(fs)) != RES_OK)
return FR_DISK_ERR;
#endif
if (disk_ioctl(drv, GET_SECTOR_COUNT, &n_vol) != RES_OK || n_vol < 128)
return FR_DISK_ERR;
b_vol = (sfd) ? 0 : 63; /* Volume start sector */
......
......@@ -84,9 +84,7 @@ typedef struct {
BYTE fsi_flag; /* fsinfo dirty flag (1:must be written back) */
WORD id; /* File system mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
#if _MAX_SS != 512
WORD ssize; /* Bytes per sector (512,1024,2048,4096) */
#endif
#if _FS_REENTRANT
_SYNC_t sobj; /* Identifier of sync object */
#endif
......
......@@ -37,48 +37,36 @@
*
* @param ops the file system instance to be registered.
*
* @return 0 on successful, -1 on failed.
* @return RT_EOK on successful, -RT_ERROR on failed.
*/
int dfs_register(const struct dfs_filesystem_operation *ops)
{
int index, result;
int free_index;
result = 0;
free_index = DFS_FILESYSTEM_TYPES_MAX;
int ret = RT_EOK;
const struct dfs_filesystem_operation **empty = RT_NULL;
const struct dfs_filesystem_operation **iter;
/* lock filesystem */
dfs_lock();
/* check if this filesystem was already registered */
for (index = 0; index < DFS_FILESYSTEM_TYPES_MAX; index++)
for (iter = &filesystem_operation_table[0];
iter < &filesystem_operation_table[DFS_FILESYSTEM_TYPES_MAX]; iter ++)
{
if (filesystem_operation_table[index] == RT_NULL)
{
/* find out an empty filesystem type entry */
if (free_index == DFS_FILESYSTEM_TYPES_MAX)
free_index = index;
}
else if (strcmp(filesystem_operation_table[index]->name, ops->name) == 0)
/* find out an empty filesystem type entry */
if (*iter == RT_NULL)
(empty == RT_NULL) ? (empty = iter) : 0;
else if (strcmp((*iter)->name, ops->name) == 0)
{
result = -1;
goto err;
ret = -1;
break;
}
}
/* filesystem type table full */
if (free_index == DFS_FILESYSTEM_TYPES_MAX)
{
result = -1;
goto err;
}
/* save the filesystem's operations */
filesystem_operation_table[free_index] = ops;
if ((ret == RT_EOK) && (empty != RT_NULL))
*empty = ops;
err:
dfs_unlock();
return result;
return ret;
}
/**
......@@ -91,37 +79,33 @@ err:
*/
struct dfs_filesystem *dfs_filesystem_lookup(const char *path)
{
struct dfs_filesystem *fs;
rt_uint32_t index, fspath, prefixlen;
struct dfs_filesystem *iter;
struct dfs_filesystem *fs = RT_NULL;
rt_uint32_t fspath, prefixlen;
fs = RT_NULL;
prefixlen = 0;
/* lock filesystem */
dfs_lock();
/* lookup it in the filesystem table */
for (index = 0; index < DFS_FILESYSTEMS_MAX; index++)
for (iter = &filesystem_table[0];
iter < &filesystem_table[DFS_FILESYSTEMS_MAX]; iter++)
{
if (filesystem_table[index].path == RT_NULL)
if ((iter->path == RT_NULL) || (iter->ops == RT_NULL))
continue;
else
{
fspath = strlen(filesystem_table[index].path);
if (fspath < prefixlen)
continue;
}
if ((filesystem_table[index].ops != RT_NULL) &&
(strncmp(filesystem_table[index].path, path, fspath) == 0))
{
/* check next path separator */
if (fspath > 1 && (strlen(path) > fspath) && (path[fspath] != '/'))
continue;
fspath = strlen(iter->path);
if ((fspath < prefixlen)
|| (strncmp(iter->path, path, fspath) != 0))
continue;
fs = &filesystem_table[index];
prefixlen = fspath;
}
/* check next path separator */
if (fspath > 1 && (strlen(path) > fspath) && (path[fspath] != '/'))
continue;
fs = iter;
prefixlen = fspath;
}
dfs_unlock();
......@@ -147,64 +131,42 @@ rt_err_t dfs_filesystem_get_partition(struct dfs_partition *part,
rt_uint8_t *dpt;
rt_uint8_t type;
rt_err_t result;
RT_ASSERT(part != RT_NULL);
RT_ASSERT(buf != RT_NULL);
result = RT_EOK;
dpt = buf + DPT_ADDRESS + pindex * DPT_ITEM_SIZE;
/* check if it is a valid partition table */
if ((*dpt != 0x80) && (*dpt != 0x00))
{
/* which is not a partition table */
result = -RT_ERROR;
return result;
}
return -RT_ERROR;
/* get partition type */
type = *(dpt+4);
if (type != 0)
{
/* set partition type */
part->type = type;
/* get partition offset and size */
part->offset = *(dpt+8) | *(dpt+9)<<8 | *(dpt+10)<<16 | *(dpt+11)<<24;
part->size = *(dpt+12) | *(dpt+13)<<8 | *(dpt+14)<<16 | *(dpt+15)<<24;
rt_kprintf("found part[%d], begin: %d, size: ",
pindex, part->offset*512);
if ((part->size>>11) > 0) /* MB */
{
unsigned int part_size;
part_size = part->size >> 11;/* MB */
if ((part_size>>10) > 0) /* GB */
{
/* GB */
rt_kprintf("%d.%d%s",part_size>>10,part_size&0x3FF,"GB\r\n");
}
else
{
/* MB */
rt_kprintf("%d.%d%s",part_size,(part->size>>1)&0x3FF,"MB\r\n");
}
}
else
{
/* KB */
rt_kprintf("%d%s",part->size>>1,"KB\r\n");
}
}
if (type == 0)
return -RT_ERROR;
/* set partition information
* size is the number of 512-Byte */
part->type = type;
part->offset = *(dpt+8) | *(dpt+9)<<8 | *(dpt+10)<<16 | *(dpt+11)<<24;
part->size = *(dpt+12) | *(dpt+13)<<8 | *(dpt+14)<<16 | *(dpt+15)<<24;
rt_kprintf("found part[%d], begin: %d, size: ",
pindex, part->offset*512);
if ((part->size>>11) == 0)
rt_kprintf("%d%s",part->size>>1,"KB\n"); /* KB */
else
{
result = -RT_ERROR;
unsigned int part_size;
part_size = part->size >> 11; /* MB */
if ((part_size>>10) == 0)
rt_kprintf("%d.%d%s",part_size,(part->size>>1)&0x3FF,"MB\n");
else
rt_kprintf("%d.%d%s",part_size>>10,part_size&0x3FF,"GB\n");
}
return result;
return RT_EOK;
}
/**
......@@ -224,57 +186,54 @@ int dfs_mount(const char *device_name,
unsigned long rwflag,
const void *data)
{
const struct dfs_filesystem_operation *ops;
struct dfs_filesystem *fs;
char *fullpath=RT_NULL;
const struct dfs_filesystem_operation **ops;
struct dfs_filesystem *iter;
struct dfs_filesystem *fs = RT_NULL;
char *fullpath = RT_NULL;
rt_device_t dev_id;
int index, free_index;
/* open specific device */
if (device_name != RT_NULL)
if (device_name == RT_NULL)
{
dev_id = rt_device_find(device_name);
if (dev_id == RT_NULL)
{
/* no this device */
rt_set_errno(-DFS_STATUS_ENODEV);
return -1;
}
/* which is a non-device filesystem mount */
dev_id = NULL;
}
else
else if ((dev_id = rt_device_find(device_name)) == RT_NULL)
{
/* which is a non-device filesystem mount */
dev_id = RT_NULL;
/* no this device */
rt_set_errno(-DFS_STATUS_ENODEV);
return -1;
}
/* find out specific filesystem */
/* find out the specific filesystem */
dfs_lock();
for (index = 0; index < DFS_FILESYSTEM_TYPES_MAX; index++)
{
if (filesystem_operation_table[index] == RT_NULL)
continue;
if (strcmp(filesystem_operation_table[index]->name, filesystemtype) == 0)
for (ops = &filesystem_operation_table[0];
ops < &filesystem_operation_table[DFS_FILESYSTEM_TYPES_MAX]; ops++)
if ((ops != RT_NULL) && (strcmp((*ops)->name, filesystemtype) == 0))
break;
}
dfs_unlock();
/* can't find filesystem */
if (index == DFS_FILESYSTEM_TYPES_MAX)
if (ops == &filesystem_operation_table[DFS_FILESYSTEM_TYPES_MAX])
{
/* can't find filesystem */
rt_set_errno(-DFS_STATUS_ENODEV);
return -1;
}
/* check if there is mount implementation */
if ((*ops == NULL) || ((*ops)->mount == NULL))
{
rt_set_errno(-DFS_STATUS_ENOSYS);
return -1;
}
ops = filesystem_operation_table[index];
/* make full path for special file */
fullpath = dfs_normalize_path(RT_NULL, path);
if (fullpath == RT_NULL) /* not an abstract path */
{
rt_set_errno(-DFS_STATUS_ENOTDIR);
return -1;
}
......@@ -293,60 +252,52 @@ int dfs_mount(const char *device_name,
dfs_file_close(&fd);
}
free_index = DFS_FILESYSTEMS_MAX;
/* check whether the file system mounted or not */
/* check whether the file system mounted or not in the filesystem table
* if it is unmounted yet, find out an empty entry */
dfs_lock();
for (index = 0; index < DFS_FILESYSTEMS_MAX; index ++)
for (iter = &filesystem_table[0];
iter < &filesystem_table[DFS_FILESYSTEMS_MAX]; iter++)
{
if (filesystem_table[index].ops == RT_NULL)
{
/* find out an empty filesystem table entry */
if (free_index == DFS_FILESYSTEMS_MAX)
free_index = index;
}
else if (strcmp(filesystem_table[index].path, path) == 0)
/* check if it is an empty filesystem table entry? if it is, save fs */
if (iter->ops == RT_NULL)
(fs == RT_NULL) ? (fs = iter) : 0;
/* check if the PATH is mounted */
else if (strcmp(iter->path, path) == 0)
{
rt_set_errno(-DFS_STATUS_EINVAL);
goto err1;
}
}
/* can't find en empty filesystem table entry */
if (free_index == DFS_FILESYSTEMS_MAX)
if ((fs == RT_NULL) && (iter == &filesystem_table[DFS_FILESYSTEMS_MAX]))
{
rt_set_errno(-DFS_STATUS_ENOSPC);
goto err1;
}
/* register file system */
fs = &(filesystem_table[free_index]);
fs->path = fullpath;
fs->ops = ops;
fs->ops = *ops;
fs->dev_id = dev_id;
/* release filesystem_table lock */
dfs_unlock();
/* open device, but do not check the status of device */
if (dev_id != RT_NULL)
rt_device_open(fs->dev_id, RT_DEVICE_OFLAG_RDWR);
/* there is no mount implementation */
if (ops->mount == RT_NULL)
{
if (dev_id != RT_NULL)
rt_device_close(dev_id);
dfs_lock();
/* clear filesystem table entry */
rt_memset(fs, 0, sizeof(struct dfs_filesystem));
dfs_unlock();
rt_free(fullpath);
rt_set_errno(-DFS_STATUS_ENOSYS);
return -1;
if (rt_device_open(fs->dev_id,
RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
/* The underlaying device has error, clear the entry. */
dfs_lock();
rt_memset(fs, 0, sizeof(struct dfs_filesystem));
goto err1;
}
}
/* call mount of this filesystem */
else if (ops->mount(fs, rwflag, data) < 0)
if ((*ops)->mount(fs, rwflag, data) < 0)
{
/* close device */
if (dev_id != RT_NULL)
......@@ -356,19 +307,14 @@ int dfs_mount(const char *device_name,
dfs_lock();
/* clear filesystem table entry */
rt_memset(fs, 0, sizeof(struct dfs_filesystem));
dfs_unlock();
rt_free(fullpath);
return -1;
goto err1;
}
return 0;
err1:
dfs_unlock();
if (fullpath != RT_NULL)
rt_free(fullpath);
rt_free(fullpath);
return -1;
}
......@@ -383,6 +329,7 @@ err1:
int dfs_unmount(const char *specialfile)
{
char *fullpath;
struct dfs_filesystem *iter;
struct dfs_filesystem *fs = RT_NULL;
fullpath = dfs_normalize_path(RT_NULL, specialfile);
......@@ -396,7 +343,17 @@ int dfs_unmount(const char *specialfile)
/* lock filesystem */
dfs_lock();
fs = dfs_filesystem_lookup(fullpath);
for (iter = &filesystem_table[0];
iter < &filesystem_table[DFS_FILESYSTEMS_MAX]; iter++)
{
/* check if the PATH is mounted */
if ((iter->path != NULL) && (strcmp(iter->path, fullpath) == 0))
{
fs = iter;
break;
}
}
if (fs == RT_NULL ||
fs->ops->unmount == RT_NULL ||
fs->ops->unmount(fs) < 0)
......@@ -437,12 +394,10 @@ err1:
int dfs_mkfs(const char *fs_name, const char *device_name)
{
int index;
rt_device_t dev_id;
rt_device_t dev_id = RT_NULL;
/* check device name, and it should not be NULL */
if (device_name == RT_NULL)
dev_id = RT_NULL;
else
if (device_name != RT_NULL)
dev_id = rt_device_find(device_name);
if (dev_id == RT_NULL)
......@@ -458,19 +413,23 @@ int dfs_mkfs(const char *fs_name, const char *device_name)
{
if (filesystem_operation_table[index] != RT_NULL &&
strcmp(filesystem_operation_table[index]->name, fs_name) == 0)
{
/* find file system operation */
const struct dfs_filesystem_operation *ops = filesystem_operation_table[index];
dfs_unlock();
if (ops->mkfs != RT_NULL)
return ops->mkfs(dev_id);
break;
}
}
dfs_unlock();
if (index < DFS_FILESYSTEM_TYPES_MAX)
{
/* find file system operation */
const struct dfs_filesystem_operation *ops = filesystem_operation_table[index];
if (ops->mkfs == RT_NULL)
{
rt_set_errno(-DFS_STATUS_ENOSYS);
return -1;
}
return ops->mkfs(dev_id);
}
rt_kprintf("Can not find the file system which named as %s.\n", fs_name);
return -1;
}
......@@ -512,7 +471,7 @@ int dfs_mount_table(void)
mount_table[index].rwflag,
mount_table[index].data) != 0)
{
rt_kprintf("mount fs[%s] on %s failed.\n", mount_table[index].filesystemtype,
rt_kprintf("mount fs[%s] on %s failed.\n", mount_table[index].filesystemtype,
mount_table[index].path);
return -RT_ERROR;
}
......@@ -538,11 +497,7 @@ int df(const char *path)
long long cap;
struct statfs buffer;
if (path == RT_NULL)
result = dfs_statfs("/", &buffer);
else
result = dfs_statfs(path, &buffer);
result = dfs_statfs(path ? path : RT_NULL, &buffer);
if (result != 0)
{
rt_kprintf("dfs_statfs failed.\n");
......
......@@ -10,6 +10,8 @@
* SQLite compile macro
*/
#define RT_USING_SQLITE
2.
关注SQLite目录下的src/sqlite_config_rtthread.h
#define SQLITE_MINIMUM_FILE_DESCRIPTOR 0
#define SQLITE_OMIT_LOAD_EXTENSION 1
#define SQLITE_OMIT_WAL
......@@ -20,11 +22,11 @@
#define SQLITE_THREADSAFE 1
#define HAVE_READLINE 0
#define NDEBUG
#define _HAVE_SQLITE_CONFIG_H
#define _HAVE_SQLITE_CONFIG_H
#define BUILD_sqlite
#define SQLITE_OS_OTHER 1
#define SQLITE_OS_RTT 1
2.
#define SQLITE_OS_OTHER 1
#define SQLITE_OS_RTTHREAD 1
3.
用test目录下的test10.c来进行测试.
推荐用mini2440bsp,因为板子的ram较大。
......
......@@ -25,6 +25,71 @@
#ifndef SQLITE_API
# define SQLITE_API
#endif
/************** Begin file sqlite_config_rtthread.h **************************/
#ifndef _SQLITE_CONFIG_RTTHREAD_H_
#define _SQLITE_CONFIG_RTTHREAD_H_
/*
* SQLite compile macro
*/
#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
#define SQLITE_MINIMUM_FILE_DESCRIPTOR 0
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
#define SQLITE_OMIT_LOAD_EXTENSION 1
#endif
//#ifndef #define SQLITE_OMIT_WAL
#define SQLITE_OMIT_WAL
//#endif
#ifndef SQLITE_RTTHREAD_NO_WIDE
#define SQLITE_RTTHREAD_NO_WIDE 1
#endif
#ifndef SQLITE_ENABLE_LOCKING_STYLE
#define SQLITE_ENABLE_LOCKING_STYLE 0
#endif
#ifndef SQLITE_DISABLE_LOCKING_STYLE
#define SQLITE_DISABLE_LOCKING_STYLE 1
#endif
#ifndef SQLITE_TEMP_STORE
#define SQLITE_TEMP_STORE 1
#endif
#ifndef SQLITE_THREADSAFE
#define SQLITE_THREADSAFE 1
#endif
#ifndef HAVE_READLINE
#define HAVE_READLINE 0
#endif
#ifndef NDEBUG
#define NDEBUG
#endif
#ifndef _HAVE_SQLITE_CONFIG_H
#define _HAVE_SQLITE_CONFIG_H
#endif
#ifndef BUILD_sqlite
#define BUILD_sqlite
#endif
#ifndef SQLITE_OS_OTHER
#define SQLITE_OS_OTHER 1
#endif
#ifndef SQLITE_OS_RTTHREAD
#define SQLITE_OS_RTTHREAD 1
#endif
#endif
/************** End of sqlite_config_rtthread.h ******************************/
/************** Begin file sqlite3.h *****************************************/
/*
** 2001 September 15
......@@ -22649,6 +22714,7 @@ SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
#if SQLITE_OS_RTTHREAD /* This file is used for rt-thread only */
/* #include <rtthread.h> */
#include <dfs_posix.h>
/*
** Include code that is common to all os_*.c files
......@@ -22863,6 +22929,51 @@ SQLITE_API int sqlite3_open_file_count = 0;
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_rtthread.c ****************/
#ifndef RT_USING_NEWLIB
#ifndef EINTR
#define EINTR 4 /* Interrupted system call */
#endif
#ifndef ENOLCK
#define ENOLCK 46 /* No record locks available */
#endif
#ifndef EACCES
#define EACCES 13 /* Permission denied */
#endif
#ifndef EPERM
#define EPERM 1 /* Operation not permitted */
#endif
#ifndef ETIMEDOUT
#define ETIMEDOUT 145 /* Connection timed out */
#endif
#ifndef ENOTCONN
#define ENOTCONN 134 /* Transport endpoint is not connected */
#endif
#if defined(__GNUC__) || defined(__ADSPBLACKFIN__)
int _gettimeofday(struct timeval *tp, void *ignore) __attribute__((weak));
int _gettimeofday(struct timeval *tp, void *ignore)
#elif defined(__CC_ARM)
__weak int _gettimeofday(struct timeval *tp, void *ignore)
#elif defined(__IAR_SYSTEMS_ICC__)
#if __VER__ > 540
__weak
#endif
int _gettimeofday(struct timeval *tp, void *ignore)
#else
int _gettimeofday(struct timeval *tp, void *ignore)
#endif
{
return 0;
}
#endif /* RT_USING_NEWLIB */
/*
** Compiling and using WAL mode requires several APIs that are not
** available in rt-thread.
......@@ -23019,7 +23130,7 @@ static int sqlite3_os_type = 0;
# define SYSCALL sqlite3_syscall_ptr
#endif
#include <dfs_posix.h>
/* #include <dfs_posix.h> */
static int _Access(const char *pathname, int mode)
{
......@@ -23110,10 +23221,10 @@ static struct rtthread_syscall {
#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
{ "read", (sqlite3_syscall_ptr)read, 0 },
#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[6].pCurrent)
#define osRead ((int(*)(int,void*,size_t))aSyscall[6].pCurrent)
{ "write", (sqlite3_syscall_ptr)write, 0 },
#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[7].pCurrent)
#define osWrite ((int(*)(int,const void*,size_t))aSyscall[7].pCurrent)
{ "unlink", (sqlite3_syscall_ptr)unlink, 0 },
#define osUnlink ((int(*)(const char*))aSyscall[8].pCurrent)
......@@ -23465,9 +23576,9 @@ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
return SQLITE_OK;
#endif
case EAGAIN:
case DFS_STATUS_EAGAIN:
case ETIMEDOUT:
case EBUSY:
case DFS_STATUS_EBUSY:
case EINTR:
case ENOLCK:
/* random NFS retry error, unless during file system support
......@@ -23506,17 +23617,17 @@ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
/* invalid fd, unless during file system support introspection, in which
* it actually means what it says */
#endif
case EIO:
case EBADF:
case EINVAL:
case DFS_STATUS_EIO:
case DFS_STATUS_EBADF:
case DFS_STATUS_EINVAL:
case ENOTCONN:
case ENODEV:
case ENXIO:
case ENOENT:
case DFS_STATUS_ENODEV:
case DFS_STATUS_ENXIO:
case DFS_STATUS_ENOENT:
#ifdef ESTALE /* ESTALE is not defined on Interix systems */
case ESTALE:
#endif
case ENOSYS:
case DFS_STATUS_ENOSYS:
/* these should force the client to close the file and reconnect */
default:
......@@ -23573,11 +23684,14 @@ static void verifyDbFile(rtthreadFile *pFile){
pFile->ctrlFlags |= UNIXFILE_WARNED;
return;
}
#warning " struct \"stat\" has no field \"st_nlink\""
#ifndef RT_USING_SQLITE
if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){
sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
pFile->ctrlFlags |= UNIXFILE_WARNED;
return;
}
#endif
}
/*
......@@ -23760,7 +23874,7 @@ static int dotlockLock(sqlite3_file *id, int eFileLock) {
if( rc<0 ){
/* failed to open/create the lock directory */
int tErrno = errno;
if( EEXIST == tErrno ){
if( DFS_STATUS_EEXIST == tErrno ){
rc = SQLITE_BUSY;
} else {
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
......@@ -23811,11 +23925,11 @@ static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
/* To fully unlock the database, delete the lock file */
assert( eFileLock==NO_LOCK );
rc = osRmdir(zLockFile);
if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
if( rc<0 && errno==DFS_STATUS_ENOTDIR ) rc = osUnlink(zLockFile);
if( rc<0 ){
int tErrno = errno;
rc = 0;
if( ENOENT != tErrno ){
if( DFS_STATUS_ENOENT != tErrno ){
rc = SQLITE_IOERR_UNLOCK;
}
if( IS_LOCK_ERROR(rc) ){
......@@ -24258,7 +24372,7 @@ static int rtthreadWrite(
SimulateDiskfullError(( wrote=0, amt=1 ));
if( amt>0 ){
if( wrote<0 && pFile->lastErrno!=ENOSPC ){
if( wrote<0 && pFile->lastErrno!=DFS_STATUS_ENOSPC ){
/* lastErrno set by seekAndWrite */
return SQLITE_IOERR_WRITE;
}else{
......@@ -25090,7 +25204,7 @@ static int rtthreadOpen(
fd = robust_open(zName, openFlags, openMode);
OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
if( fd<0 && errno!=DFS_STATUS_EISDIR && isReadWrite && !isExclusive ){
/* Failed to open the file for read/write access. Try read-only. */
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
openFlags &= ~(O_RDWR|O_CREAT);
......@@ -25148,7 +25262,7 @@ static int rtthreadDelete(
UNUSED_PARAMETER(NotUsed);
SimulateIOError(return SQLITE_IOERR_DELETE);
if( osUnlink(zPath)==(-1) ){
if( errno==ENOENT ){
if( errno==DFS_STATUS_ENOENT ){
rc = SQLITE_IOERR_DELETE_NOENT;
}else{
rc = rtthreadLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
......@@ -25179,6 +25293,17 @@ static int rtthreadDelete(
**
** Otherwise return 0.
*/
#ifndef F_OK
# define F_OK 0
#endif
#ifndef R_OK
# define R_OK 4
#endif
#ifndef W_OK
# define W_OK 2
#endif
static int rtthreadAccess(
sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
const char *zPath, /* Path of the file to examine */
......@@ -346,6 +346,8 @@ SRC += \
parse.h \
config.h \
sqlite3.h
SRC += $(TOP)/src/sqlite_config_rtthread.h
# Source code to the test files.
#
......
......@@ -16,12 +16,58 @@
#if SQLITE_OS_RTTHREAD /* This file is used for rt-thread only */
#include <rtthread.h>
#include <dfs_posix.h>
/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"
#ifndef RT_USING_NEWLIB
#ifndef EINTR
#define EINTR 4 /* Interrupted system call */
#endif
#ifndef ENOLCK
#define ENOLCK 46 /* No record locks available */
#endif
#ifndef EACCES
#define EACCES 13 /* Permission denied */
#endif
#ifndef EPERM
#define EPERM 1 /* Operation not permitted */
#endif
#ifndef ETIMEDOUT
#define ETIMEDOUT 145 /* Connection timed out */
#endif
#ifndef ENOTCONN
#define ENOTCONN 134 /* Transport endpoint is not connected */
#endif
#if defined(__GNUC__) || defined(__ADSPBLACKFIN__)
int _gettimeofday(struct timeval *tp, void *ignore) __attribute__((weak));
int _gettimeofday(struct timeval *tp, void *ignore)
#elif defined(__CC_ARM)
__weak int _gettimeofday(struct timeval *tp, void *ignore)
#elif defined(__IAR_SYSTEMS_ICC__)
#if __VER__ > 540
__weak
#endif
int _gettimeofday(struct timeval *tp, void *ignore)
#else
int _gettimeofday(struct timeval *tp, void *ignore)
#endif
{
return 0;
}
#endif /* RT_USING_NEWLIB */
/*
** Compiling and using WAL mode requires several APIs that are not
** available in rt-thread.
......@@ -269,10 +315,10 @@ static struct rtthread_syscall {
#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
{ "read", (sqlite3_syscall_ptr)read, 0 },
#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[6].pCurrent)
#define osRead ((int(*)(int,void*,size_t))aSyscall[6].pCurrent)
{ "write", (sqlite3_syscall_ptr)write, 0 },
#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[7].pCurrent)
#define osWrite ((int(*)(int,const void*,size_t))aSyscall[7].pCurrent)
{ "unlink", (sqlite3_syscall_ptr)unlink, 0 },
#define osUnlink ((int(*)(const char*))aSyscall[8].pCurrent)
......@@ -624,9 +670,9 @@ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
return SQLITE_OK;
#endif
case EAGAIN:
case DFS_STATUS_EAGAIN:
case ETIMEDOUT:
case EBUSY:
case DFS_STATUS_EBUSY:
case EINTR:
case ENOLCK:
/* random NFS retry error, unless during file system support
......@@ -665,17 +711,17 @@ static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
/* invalid fd, unless during file system support introspection, in which
* it actually means what it says */
#endif
case EIO:
case EBADF:
case EINVAL:
case DFS_STATUS_EIO:
case DFS_STATUS_EBADF:
case DFS_STATUS_EINVAL:
case ENOTCONN:
case ENODEV:
case ENXIO:
case ENOENT:
case DFS_STATUS_ENODEV:
case DFS_STATUS_ENXIO:
case DFS_STATUS_ENOENT:
#ifdef ESTALE /* ESTALE is not defined on Interix systems */
case ESTALE:
#endif
case ENOSYS:
case DFS_STATUS_ENOSYS:
/* these should force the client to close the file and reconnect */
default:
......@@ -732,11 +778,14 @@ static void verifyDbFile(rtthreadFile *pFile){
pFile->ctrlFlags |= UNIXFILE_WARNED;
return;
}
#warning " struct \"stat\" has no field \"st_nlink\""
#ifndef RT_USING_SQLITE
if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){
sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
pFile->ctrlFlags |= UNIXFILE_WARNED;
return;
}
#endif
}
/*
......@@ -919,7 +968,7 @@ static int dotlockLock(sqlite3_file *id, int eFileLock) {
if( rc<0 ){
/* failed to open/create the lock directory */
int tErrno = errno;
if( EEXIST == tErrno ){
if( DFS_STATUS_EEXIST == tErrno ){
rc = SQLITE_BUSY;
} else {
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
......@@ -970,11 +1019,11 @@ static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
/* To fully unlock the database, delete the lock file */
assert( eFileLock==NO_LOCK );
rc = osRmdir(zLockFile);
if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
if( rc<0 && errno==DFS_STATUS_ENOTDIR ) rc = osUnlink(zLockFile);
if( rc<0 ){
int tErrno = errno;
rc = 0;
if( ENOENT != tErrno ){
if( DFS_STATUS_ENOENT != tErrno ){
rc = SQLITE_IOERR_UNLOCK;
}
if( IS_LOCK_ERROR(rc) ){
......@@ -1417,7 +1466,7 @@ static int rtthreadWrite(
SimulateDiskfullError(( wrote=0, amt=1 ));
if( amt>0 ){
if( wrote<0 && pFile->lastErrno!=ENOSPC ){
if( wrote<0 && pFile->lastErrno!=DFS_STATUS_ENOSPC ){
/* lastErrno set by seekAndWrite */
return SQLITE_IOERR_WRITE;
}else{
......@@ -2249,7 +2298,7 @@ static int rtthreadOpen(
fd = robust_open(zName, openFlags, openMode);
OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
if( fd<0 && errno!=DFS_STATUS_EISDIR && isReadWrite && !isExclusive ){
/* Failed to open the file for read/write access. Try read-only. */
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
openFlags &= ~(O_RDWR|O_CREAT);
......@@ -2307,7 +2356,7 @@ static int rtthreadDelete(
UNUSED_PARAMETER(NotUsed);
SimulateIOError(return SQLITE_IOERR_DELETE);
if( osUnlink(zPath)==(-1) ){
if( errno==ENOENT ){
if( errno==DFS_STATUS_ENOENT ){
rc = SQLITE_IOERR_DELETE_NOENT;
}else{
rc = rtthreadLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
......@@ -2338,6 +2387,17 @@ static int rtthreadDelete(
**
** Otherwise return 0.
*/
#ifndef F_OK
# define F_OK 0
#endif
#ifndef R_OK
# define R_OK 4
#endif
#ifndef W_OK
# define W_OK 2
#endif
static int rtthreadAccess(
sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
const char *zPath, /* Path of the file to examine */
......
#ifndef _SQLITE_CONFIG_RTTHREAD_H_
#define _SQLITE_CONFIG_RTTHREAD_H_
/*
* SQLite compile macro
*/
#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
#define SQLITE_MINIMUM_FILE_DESCRIPTOR 0
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
#define SQLITE_OMIT_LOAD_EXTENSION 1
#endif
//#ifndef #define SQLITE_OMIT_WAL
#define SQLITE_OMIT_WAL
//#endif
#ifndef SQLITE_RTTHREAD_NO_WIDE
#define SQLITE_RTTHREAD_NO_WIDE 1
#endif
#ifndef SQLITE_ENABLE_LOCKING_STYLE
#define SQLITE_ENABLE_LOCKING_STYLE 0
#endif
#ifndef SQLITE_DISABLE_LOCKING_STYLE
#define SQLITE_DISABLE_LOCKING_STYLE 1
#endif
#ifndef SQLITE_TEMP_STORE
#define SQLITE_TEMP_STORE 1
#endif
#ifndef SQLITE_THREADSAFE
#define SQLITE_THREADSAFE 1
#endif
#ifndef HAVE_READLINE
#define HAVE_READLINE 0
#endif
#ifndef NDEBUG
#define NDEBUG
#endif
#ifndef _HAVE_SQLITE_CONFIG_H
#define _HAVE_SQLITE_CONFIG_H
#endif
#ifndef BUILD_sqlite
#define BUILD_sqlite
#endif
#ifndef SQLITE_OS_OTHER
#define SQLITE_OS_OTHER 1
#endif
#ifndef SQLITE_OS_RTTHREAD
#define SQLITE_OS_RTTHREAD 1
#endif
#endif
......@@ -228,6 +228,7 @@ proc copy_file {filename} {
# inlining opportunities.
#
foreach file {
sqlite_config_rtthread.h
sqlite3.h
sqliteInt.h
......
......@@ -19,6 +19,7 @@
*
* Change Logs:
* Date Author Notes
* 2013-12-23 Bernard Add the checking for ESHUTDOWN
*/
#ifndef __POSIX_TYPES_H__
......@@ -37,7 +38,9 @@
#include <errno.h>
#include <stdarg.h>
#ifndef ESHUTDOWN
#define ESHUTDOWN 180
#endif
#else
......
......@@ -34,6 +34,8 @@ memp_simple.c
tc_sample.c
""")
group = DefineGroup('examples', src, depend = ['RT_USING_TC'])
group = DefineGroup('examples', src,
depend = ['RT_USING_TC'],
CPPPATH=[GetCurrentDir()])
Return('group')
#include <rtthread.h>
#include <rthw.h>
#define CPU_USAGE_CALC_TICK 10
#define CPU_USAGE_LOOP 100
#define CPU_USAGE_CALC_TICK 10
#define CPU_USAGE_LOOP 100
static rt_uint8_t cpu_usage_major = 0, cpu_usage_minor= 0;
static rt_uint32_t total_count = 0;
static void cpu_usage_idle_hook()
{
rt_tick_t tick;
rt_uint32_t count;
volatile rt_uint32_t loop;
rt_tick_t tick;
rt_uint32_t count;
volatile rt_uint32_t loop;
if (total_count == 0)
{
/* get total count */
rt_enter_critical();
tick = rt_tick_get();
while(rt_tick_get() - tick < CPU_USAGE_CALC_TICK)
{
total_count ++;
loop = 0;
while (loop < CPU_USAGE_LOOP) loop ++;
}
rt_exit_critical();
}
if (total_count == 0)
{
/* get total count */
rt_enter_critical();
tick = rt_tick_get();
while(rt_tick_get() - tick < CPU_USAGE_CALC_TICK)
{
total_count ++;
loop = 0;
while (loop < CPU_USAGE_LOOP) loop ++;
}
rt_exit_critical();
}
count = 0;
/* get CPU usage */
tick = rt_tick_get();
while (rt_tick_get() - tick < CPU_USAGE_CALC_TICK)
{
count ++;
loop = 0;
while (loop < CPU_USAGE_LOOP) loop ++;
}
count = 0;
/* get CPU usage */
tick = rt_tick_get();
while (rt_tick_get() - tick < CPU_USAGE_CALC_TICK)
{
count ++;
loop = 0;
while (loop < CPU_USAGE_LOOP) loop ++;
}
/* calculate major and minor */
if (count < total_count)
{
count = total_count - count;
cpu_usage_major = (count * 100) / total_count;
cpu_usage_minor = ((count * 100) % total_count) * 100 / total_count;
}
else
{
total_count = count;
/* calculate major and minor */
if (count < total_count)
{
count = total_count - count;
cpu_usage_major = (count * 100) / total_count;
cpu_usage_minor = ((count * 100) % total_count) * 100 / total_count;
}
else
{
total_count = count;
/* no CPU usage */
cpu_usage_major = 0;
cpu_usage_minor = 0;
}
/* no CPU usage */
cpu_usage_major = 0;
cpu_usage_minor = 0;
}
}
void cpu_usage_get(rt_uint8_t *major, rt_uint8_t *minor)
{
RT_ASSERT(major != RT_NULL);
RT_ASSERT(minor != RT_NULL);
RT_ASSERT(major != RT_NULL);
RT_ASSERT(minor != RT_NULL);
*major = cpu_usage_major;
*minor = cpu_usage_minor;
*major = cpu_usage_major;
*minor = cpu_usage_minor;
}
void cpu_usage_init()
{
/* set idle thread hook */
rt_thread_idle_sethook(cpu_usage_idle_hook);
/* set idle thread hook */
rt_thread_idle_sethook(cpu_usage_idle_hook);
}
......@@ -20,124 +20,124 @@ static struct rt_event event;
/* 线程1入口函数 */
static void thread1_entry(void *param)
{
rt_uint32_t e;
while (1)
{
/* receive first event */
if (rt_event_recv(&event, ((1 << 3) | (1 << 5)),
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER, &e) == RT_EOK)
{
rt_kprintf("thread1: AND recv event 0x%x\n", e);
}
rt_kprintf("thread1: delay 1s to prepare second event\n");
rt_thread_delay(10);
/* receive second event */
if (rt_event_recv(&event, ((1 << 3) | (1 << 5)),
RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER, &e) == RT_EOK)
{
rt_kprintf("thread1: OR recv event 0x%x\n", e);
}
rt_thread_delay(5);
}
rt_uint32_t e;
while (1)
{
/* receive first event */
if (rt_event_recv(&event, ((1 << 3) | (1 << 5)),
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER, &e) == RT_EOK)
{
rt_kprintf("thread1: AND recv event 0x%x\n", e);
}
rt_kprintf("thread1: delay 1s to prepare second event\n");
rt_thread_delay(10);
/* receive second event */
if (rt_event_recv(&event, ((1 << 3) | (1 << 5)),
RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER, &e) == RT_EOK)
{
rt_kprintf("thread1: OR recv event 0x%x\n", e);
}
rt_thread_delay(5);
}
}
/* 线程2入口函数 */
static void thread2_entry(void *param)
{
while (1)
{
rt_kprintf("thread2: send event1\n");
rt_event_send(&event, (1 << 3));
while (1)
{
rt_kprintf("thread2: send event1\n");
rt_event_send(&event, (1 << 3));
rt_thread_delay(10);
}
rt_thread_delay(10);
}
}
/* 线程3入口函数 */
static void thread3_entry(void *param)
{
while (1)
{
rt_kprintf("thread3: send event2\n");
rt_event_send(&event, (1 << 5));
while (1)
{
rt_kprintf("thread3: send event2\n");
rt_event_send(&event, (1 << 5));
rt_thread_delay(20);
}
rt_thread_delay(20);
}
}
int event_simple_init()
{
/* 初始化事件对象 */
rt_event_init(&event, "event", RT_IPC_FLAG_FIFO);
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread3_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化事件对象 */
rt_event_init(&event, "event", RT_IPC_FLAG_FIFO);
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread3_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
/* 执行事件对象脱离 */
rt_event_detach(&event);
/* 执行事件对象脱离 */
rt_event_detach(&event);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_event_simple()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
event_simple_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
event_simple_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_event_simple, a simple event example);
......@@ -145,8 +145,8 @@ FINSH_FUNCTION_EXPORT(_tc_event_simple, a simple event example);
/* 用户应用入口 */
int rt_application_init()
{
event_simple_init();
event_simple_init();
return 0;
return 0;
}
#endif
......@@ -7,66 +7,68 @@
static rt_bool_t mem_check(rt_uint8_t *ptr, rt_uint8_t value, rt_uint32_t len)
{
while (len)
{
if (*ptr != value) return RT_FALSE;
while (len)
{
if (*ptr != value)
return RT_FALSE;
ptr ++;
len --;
}
ptr ++;
len --;
}
return RT_TRUE;
return RT_TRUE;
}
static void heap_malloc_init()
{
rt_uint8_t *ptr1, *ptr2, *ptr3, *ptr4, *ptr5;
ptr1 = rt_malloc(1);
ptr2 = rt_malloc(13);
ptr3 = rt_malloc(31);
ptr4 = rt_malloc(127);
ptr5 = rt_malloc(0);
rt_uint8_t res = TC_STAT_PASSED;
rt_uint8_t *ptr1, *ptr2, *ptr3, *ptr4, *ptr5;
memset(ptr1, 1, 1);
memset(ptr2, 2, 13);
memset(ptr3, 3, 31);
memset(ptr4, 4, 127);
ptr1 = rt_malloc(1);
ptr2 = rt_malloc(13);
ptr3 = rt_malloc(31);
ptr4 = rt_malloc(127);
ptr5 = rt_malloc(0);
if (mem_check(ptr1, 1, 1) != RT_FALSE) goto _failed;
if (mem_check(ptr2, 2, 13) != RT_FALSE) goto _failed;
if (mem_check(ptr3, 3, 31) != RT_FALSE) goto _failed;
if (mem_check(ptr4, 4, 127) != RT_FALSE) goto _failed;
memset(ptr1, 1, 1);
memset(ptr2, 2, 13);
memset(ptr3, 3, 31);
memset(ptr4, 4, 127);
rt_free(ptr4);
rt_free(ptr3);
rt_free(ptr3);
rt_free(ptr1);
if (mem_check(ptr1, 1, 1) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr2, 2, 13) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr3, 3, 31) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr4, 4, 127) == RT_FALSE)
res = TC_STAT_FAILED;
if (ptr5 != RT_NULL)
{
rt_free(ptr5);
}
rt_free(ptr4);
rt_free(ptr3);
rt_free(ptr2);
rt_free(ptr1);
tc_done(TC_STAT_PASSED);
if (ptr5 != RT_NULL)
{
rt_free(ptr5);
}
_failed:
tc_done(TC_STAT_FAILED);
tc_done(res);
}
#ifdef RT_USING_TC
int _tc_heap_malloc()
{
heap_malloc_init();
heap_malloc_init();
return 0;
return 0;
}
FINSH_FUNCTION_EXPORT(_tc_heap_malloc, a heap malloc test);
#else
int rt_application_init()
{
heap_malloc_init();
heap_malloc_init();
return 0;
return 0;
}
#endif
......@@ -7,77 +7,96 @@
static rt_bool_t mem_check(rt_uint8_t *ptr, rt_uint8_t value, rt_uint32_t len)
{
while (len)
{
if (*ptr != value) return RT_FALSE;
while (len)
{
if (*ptr != value) return RT_FALSE;
ptr ++;
len --;
}
ptr ++;
len --;
}
return RT_TRUE;
return RT_TRUE;
}
static void heap_realloc_init()
{
rt_uint8_t *ptr1, *ptr2, *ptr3, *ptr4, *ptr5;
ptr1 = rt_malloc(1);
ptr2 = rt_malloc(13);
ptr3 = rt_malloc(31);
ptr4 = rt_malloc(127);
ptr5 = rt_malloc(0);
memset(ptr1, 1, 1);
memset(ptr2, 2, 13);
memset(ptr3, 3, 31);
memset(ptr4, 4, 127);
if (mem_check(ptr1, 1, 1) != RT_FALSE) goto _failed;
if (mem_check(ptr2, 2, 13) != RT_FALSE) goto _failed;
if (mem_check(ptr3, 3, 31) != RT_FALSE) goto _failed;
if (mem_check(ptr4, 4, 127) != RT_FALSE) goto _failed;
ptr1 = rt_realloc(ptr1, 13);
ptr2 = rt_realloc(ptr2, 31);
ptr3 = rt_realloc(ptr3, 127);
ptr4 = rt_realloc(ptr4, 1);
ptr5 = rt_realloc(ptr5, 0);
if (mem_check(ptr1, 1, 1) != RT_FALSE) goto _failed;
if (mem_check(ptr2, 2, 13) != RT_FALSE) goto _failed;
if (mem_check(ptr3, 3, 31) != RT_FALSE) goto _failed;
if (mem_check(ptr4, 4, 1) != RT_FALSE) goto _failed;
rt_free(ptr4);
rt_free(ptr3);
rt_free(ptr3);
rt_free(ptr1);
if (ptr5 != RT_NULL)
{
rt_free(ptr5);
}
tc_done(TC_STAT_PASSED);
_failed:
tc_done(TC_STAT_FAILED);
rt_uint8_t res = TC_STAT_PASSED;
rt_uint8_t *ptr1, *ptr2, *ptr3, *ptr4, *ptr5;
ptr1 = rt_malloc(1);
ptr2 = rt_malloc(13);
ptr3 = rt_malloc(31);
ptr4 = rt_malloc(127);
ptr5 = rt_malloc(0);
memset(ptr1, 1, 1);
memset(ptr2, 2, 13);
memset(ptr3, 3, 31);
memset(ptr4, 4, 127);
if (mem_check(ptr1, 1, 1) == RT_FALSE)
{
res = TC_STAT_FAILED;
goto _free;
}
if (mem_check(ptr2, 2, 13) == RT_FALSE)
{
res = TC_STAT_FAILED;
goto _free;
}
if (mem_check(ptr3, 3, 31) == RT_FALSE)
{
res = TC_STAT_FAILED;
goto _free;
}
if (mem_check(ptr4, 4, 127) == RT_FALSE)
{
res = TC_STAT_FAILED;
goto _free;
}
ptr1 = rt_realloc(ptr1, 13);
ptr2 = rt_realloc(ptr2, 31);
ptr3 = rt_realloc(ptr3, 127);
ptr4 = rt_realloc(ptr4, 1);
ptr5 = rt_realloc(ptr5, 0);
if (ptr5)
{
rt_kprintf("realloc(ptr, 0) should return NULL\n");
res = TC_STAT_FAILED;
}
if (mem_check(ptr1, 1, 1) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr2, 2, 13) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr3, 3, 31) == RT_FALSE)
res = TC_STAT_FAILED;
if (mem_check(ptr4, 4, 1) == RT_FALSE)
res = TC_STAT_FAILED;
_free:
rt_free(ptr4);
rt_free(ptr3);
rt_free(ptr2);
rt_free(ptr1);
tc_done(res);
}
#ifdef RT_USING_TC
int _tc_heap_realloc()
{
heap_realloc_init();
heap_realloc_init();
return 0;
return 0;
}
FINSH_FUNCTION_EXPORT(_tc_heap_realloc, a heap re-malloc test);
#else
int rt_application_init()
{
heap_realloc_init();
heap_realloc_init();
return 0;
return 0;
}
#endif
......@@ -22,110 +22,110 @@ static char mb_str2[] = "this is another mail!";
/* 线程1入口 */
static void thread1_entry(void* parameter)
{
unsigned char* str;
while (1)
{
/* 从邮箱中收取邮件 */
if (rt_mb_recv(&mb, (rt_uint32_t*)&str, RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: get a mail from mailbox, the content:%s\n", str);
/* 延时20个OS Tick */
rt_thread_delay(50);
}
}
unsigned char* str;
while (1)
{
/* 从邮箱中收取邮件 */
if (rt_mb_recv(&mb, (rt_uint32_t*)&str, RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: get a mail from mailbox, the content:%s\n", str);
/* 延时20个OS Tick */
rt_thread_delay(50);
}
}
}
/* 线程2入口 */
static void thread2_entry(void* parameter)
{
rt_uint8_t count;
rt_uint8_t count;
char *str;
count = 0;
while (1)
{
count ++;
if (count & 0x1)
{
/* 发送mb_str1地址到邮箱中 */
count = 0;
while (1)
{
count ++;
if (count & 0x1)
{
/* 发送mb_str1地址到邮箱中 */
str = mb_str1;
}
else
{
/* 发送mb_str2地址到邮箱中 */
}
else
{
/* 发送mb_str2地址到邮箱中 */
str = mb_str2;
}
}
/* 不停的发送邮件,如果满了则等待10个tick,然后超时 */
if( rt_mb_send_wait(&mb, (rt_uint32_t)str,10) == RT_EOK )
rt_kprintf("thread2: sent a mail to mailbox, the content:%s\n", str);
else
rt_kprintf("thread2: timeout while waiting to send a mail.\n");
}
}
}
int mbox_send_wait_init()
{
/* 初始化一个mailbox */
rt_mb_init(&mb,
"mbt", /* 名称是mbt */
&mb_pool[0], /* 邮箱用到的内存池是mb_pool */
sizeof(mb_pool)/4, /* 大小是mb_pool大小除以4,因为一封邮件的大小是4字节 */
RT_IPC_FLAG_FIFO); /* 采用FIFO方式进行线程等待 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化一个mailbox */
rt_mb_init(&mb,
"mbt", /* 名称是mbt */
&mb_pool[0], /* 邮箱用到的内存池是mb_pool */
sizeof(mb_pool)/4, /* 大小是mb_pool大小除以4,因为一封邮件的大小是4字节 */
RT_IPC_FLAG_FIFO); /* 采用FIFO方式进行线程等待 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 执行邮箱对象脱离 */
rt_mb_detach(&mb);
/* 执行邮箱对象脱离 */
rt_mb_detach(&mb);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_mbox_send_wait()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mbox_send_wait_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mbox_send_wait_init();
/* 返回TestCase运行的最长时间 */
return 300;
/* 返回TestCase运行的最长时间 */
return 300;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_mbox_send_wait, a example of mailbox send wait);
......@@ -133,9 +133,9 @@ FINSH_FUNCTION_EXPORT(_tc_mbox_send_wait, a example of mailbox send wait);
/* 用户应用入口 */
int rt_application_init()
{
mbox_send_wait_init();
mbox_send_wait_init();
return 0;
return 0;
}
#endif
......@@ -22,108 +22,108 @@ static char mb_str2[] = "this is another mail!";
/* 线程1入口 */
static void thread1_entry(void* parameter)
{
unsigned char* str;
unsigned char* str;
while (1)
{
rt_kprintf("thread1: try to recv a mail\n");
while (1)
{
rt_kprintf("thread1: try to recv a mail\n");
/* 从邮箱中收取邮件 */
if (rt_mb_recv(&mb, (rt_uint32_t*)&str, RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: get a mail from mailbox, the content:%s\n", str);
/* 从邮箱中收取邮件 */
if (rt_mb_recv(&mb, (rt_uint32_t*)&str, RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: get a mail from mailbox, the content:%s\n", str);
/* 延时10个OS Tick */
rt_thread_delay(10);
}
}
/* 延时10个OS Tick */
rt_thread_delay(10);
}
}
}
/* 线程2入口 */
static void thread2_entry(void* parameter)
{
rt_uint8_t count;
count = 0;
while (1)
{
count ++;
if (count & 0x1)
{
/* 发送mb_str1地址到邮箱中 */
rt_mb_send(&mb, (rt_uint32_t)&mb_str1[0]);
}
else
{
/* 发送mb_str2地址到邮箱中 */
rt_mb_send(&mb, (rt_uint32_t)&mb_str2[0]);
}
/* 延时20个OS Tick */
rt_thread_delay(20);
}
rt_uint8_t count;
count = 0;
while (1)
{
count ++;
if (count & 0x1)
{
/* 发送mb_str1地址到邮箱中 */
rt_mb_send(&mb, (rt_uint32_t)&mb_str1[0]);
}
else
{
/* 发送mb_str2地址到邮箱中 */
rt_mb_send(&mb, (rt_uint32_t)&mb_str2[0]);
}
/* 延时20个OS Tick */
rt_thread_delay(20);
}
}
int mbox_simple_init()
{
/* 初始化一个mailbox */
rt_mb_init(&mb,
"mbt", /* 名称是mbt */
&mb_pool[0], /* 邮箱用到的内存池是mb_pool */
sizeof(mb_pool)/4, /* 大小是mb_pool大小除以4,因为一封邮件的大小是4字节 */
RT_IPC_FLAG_FIFO); /* 采用FIFO方式进行线程等待 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化一个mailbox */
rt_mb_init(&mb,
"mbt", /* 名称是mbt */
&mb_pool[0], /* 邮箱用到的内存池是mb_pool */
sizeof(mb_pool)/4, /* 大小是mb_pool大小除以4,因为一封邮件的大小是4字节 */
RT_IPC_FLAG_FIFO); /* 采用FIFO方式进行线程等待 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 执行邮箱对象脱离 */
rt_mb_detach(&mb);
/* 执行邮箱对象脱离 */
rt_mb_detach(&mb);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_mbox_simple()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mbox_simple_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mbox_simple_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_mbox_simple, a simple mailbox example);
......@@ -131,8 +131,8 @@ FINSH_FUNCTION_EXPORT(_tc_mbox_simple, a simple mailbox example);
/* 用户应用入口 */
int rt_application_init()
{
mbox_simple_init();
mbox_simple_init();
return 0;
return 0;
}
#endif
......@@ -18,115 +18,115 @@ static rt_thread_t tid2 = RT_NULL;
/* 线程1入口 */
static void thread1_entry(void* parameter)
{
int i;
char *block;
while(1)
{
for (i = 0; i < 48; i++)
{
/* 申请内存块 */
rt_kprintf("allocate No.%d\n", i);
if (ptr[i] == RT_NULL)
{
ptr[i] = rt_mp_alloc(&mp, RT_WAITING_FOREVER);
}
}
/* 继续申请一个内存块,因为已经没有内存块,线程应该被挂起 */
block = rt_mp_alloc(&mp, RT_WAITING_FOREVER);
rt_kprintf("allocate the block mem\n");
/* 释放这个内存块 */
rt_mp_free(block);
block = RT_NULL;
}
int i;
char *block;
while(1)
{
for (i = 0; i < 48; i++)
{
/* 申请内存块 */
rt_kprintf("allocate No.%d\n", i);
if (ptr[i] == RT_NULL)
{
ptr[i] = rt_mp_alloc(&mp, RT_WAITING_FOREVER);
}
}
/* 继续申请一个内存块,因为已经没有内存块,线程应该被挂起 */
block = rt_mp_alloc(&mp, RT_WAITING_FOREVER);
rt_kprintf("allocate the block mem\n");
/* 释放这个内存块 */
rt_mp_free(block);
block = RT_NULL;
}
}
/* 线程2入口,线程2的优先级比线程1低,应该线程1先获得执行。*/
static void thread2_entry(void *parameter)
{
int i;
while(1)
{
rt_kprintf("try to release block\n");
for (i = 0 ; i < 48; i ++)
{
/* 释放所有分配成功的内存块 */
if (ptr[i] != RT_NULL)
{
rt_kprintf("release block %d\n", i);
rt_mp_free(ptr[i]);
ptr[i] = RT_NULL;
}
}
/* 休眠10个OS Tick */
rt_thread_delay(10);
}
int i;
while(1)
{
rt_kprintf("try to release block\n");
for (i = 0 ; i < 48; i ++)
{
/* 释放所有分配成功的内存块 */
if (ptr[i] != RT_NULL)
{
rt_kprintf("release block %d\n", i);
rt_mp_free(ptr[i]);
ptr[i] = RT_NULL;
}
}
/* 休眠10个OS Tick */
rt_thread_delay(10);
}
}
int mempool_simple_init()
{
int i;
for (i = 0; i < 48; i ++) ptr[i] = RT_NULL;
/* 初始化内存池对象 */
rt_mp_init(&mp, "mp1", &mempool[0], sizeof(mempool), 80);
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
int i;
for (i = 0; i < 48; i ++) ptr[i] = RT_NULL;
/* 初始化内存池对象 */
rt_mp_init(&mp, "mp1", &mempool[0], sizeof(mempool), 80);
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
/* 执行内存池脱离 */
rt_mp_detach(&mp);
/* 执行内存池脱离 */
rt_mp_detach(&mp);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_mempool_simple()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mempool_simple_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mempool_simple_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_mempool_simple, a memory pool example);
......@@ -134,8 +134,8 @@ FINSH_FUNCTION_EXPORT(_tc_mempool_simple, a memory pool example);
/* 用户应用入口 */
int rt_application_init()
{
mempool_simple_init();
mempool_simple_init();
return 0;
return 0;
}
#endif
......@@ -20,139 +20,139 @@ static char msg_pool[2048];
/* 线程1入口函数 */
static void thread1_entry(void* parameter)
{
char buf[128];
char buf[128];
while (1)
{
rt_memset(&buf[0], 0, sizeof(buf));
while (1)
{
rt_memset(&buf[0], 0, sizeof(buf));
/* 从消息队列中接收消息 */
if (rt_mq_recv(&mq, &buf[0], sizeof(buf), RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: recv msg from message queue, the content:%s\n", buf);
}
/* 从消息队列中接收消息 */
if (rt_mq_recv(&mq, &buf[0], sizeof(buf), RT_WAITING_FOREVER) == RT_EOK)
{
rt_kprintf("thread1: recv msg from message queue, the content:%s\n", buf);
}
/* 延迟10个OS Tick */
rt_thread_delay(10);
}
/* 延迟10个OS Tick */
rt_thread_delay(10);
}
}
/* 线程2入口函数 */
static void thread2_entry(void* parameter)
{
int i, result;
char buf[] = "this is message No.x";
while (1)
{
for (i = 0; i < 10; i++)
{
buf[sizeof(buf) - 2] = '0' + i;
rt_kprintf("thread2: send message - %s\n", buf);
/* 发送消息到消息队列中 */
result = rt_mq_send(&mq, &buf[0], sizeof(buf));
if ( result == -RT_EFULL)
{
/* 消息队列满, 延迟1s时间 */
rt_kprintf("message queue full, delay 1s\n");
rt_thread_delay(100);
}
}
/* 延时10个OS Tick */
rt_thread_delay(10);
}
int i, result;
char buf[] = "this is message No.x";
while (1)
{
for (i = 0; i < 10; i++)
{
buf[sizeof(buf) - 2] = '0' + i;
rt_kprintf("thread2: send message - %s\n", buf);
/* 发送消息到消息队列中 */
result = rt_mq_send(&mq, &buf[0], sizeof(buf));
if ( result == -RT_EFULL)
{
/* 消息队列满, 延迟1s时间 */
rt_kprintf("message queue full, delay 1s\n");
rt_thread_delay(100);
}
}
/* 延时10个OS Tick */
rt_thread_delay(10);
}
}
/* 线程3入口函数 */
static void thread3_entry(void* parameter)
{
char buf[] = "this is an urgent message!";
char buf[] = "this is an urgent message!";
while (1)
{
rt_kprintf("thread3: send an urgent message\n");
while (1)
{
rt_kprintf("thread3: send an urgent message\n");
/* 发送紧急消息到消息队列中 */
rt_mq_urgent(&mq, &buf[0], sizeof(buf));
/* 发送紧急消息到消息队列中 */
rt_mq_urgent(&mq, &buf[0], sizeof(buf));
/* 延时25个OS Tick */
rt_thread_delay(25);
}
/* 延时25个OS Tick */
rt_thread_delay(25);
}
}
int messageq_simple_init()
{
/* 初始化消息队列 */
rt_mq_init(&mq, "mqt",
&msg_pool[0], /* 内存池指向msg_pool */
128 - sizeof(void*), /* 每个消息的大小是 128 - void* */
sizeof(msg_pool), /* 内存池的大小是msg_pool的大小 */
RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化消息队列 */
rt_mq_init(&mq, "mqt",
&msg_pool[0], /* 内存池指向msg_pool */
128 - sizeof(void*), /* 每个消息的大小是 128 - void* */
sizeof(msg_pool), /* 内存池的大小是msg_pool的大小 */
RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
/* 执行消息队列对象脱离 */
rt_mq_detach(&mq);
/* 执行消息队列对象脱离 */
rt_mq_detach(&mq);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_messageq_simple()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
messageq_simple_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
messageq_simple_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_messageq_simple, a simple message queue example);
......@@ -160,8 +160,8 @@ FINSH_FUNCTION_EXPORT(_tc_messageq_simple, a simple message queue example);
/* 用户应用入口 */
int rt_application_init()
{
messageq_simple_init();
messageq_simple_init();
return 0;
return 0;
}
#endif
......@@ -13,142 +13,142 @@ static rt_mutex_t mutex = RT_NULL;
/* 线程1入口 */
static void thread1_entry(void* parameter)
{
/* 先让低优先级线程运行 */
rt_thread_delay(10);
/* 此时thread3持有mutex,并且thread2等待持有mutex */
/* 检查thread2与thread3的优先级情况 */
if (tid2->current_priority != tid3->current_priority)
{
/* 优先级不相同,测试失败 */
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return;
}
/* 先让低优先级线程运行 */
rt_thread_delay(10);
/* 此时thread3持有mutex,并且thread2等待持有mutex */
/* 检查thread2与thread3的优先级情况 */
if (tid2->current_priority != tid3->current_priority)
{
/* 优先级不相同,测试失败 */
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return;
}
}
/* 线程2入口 */
static void thread2_entry(void* parameter)
{
rt_err_t result;
/* 先让低优先级线程运行 */
rt_thread_delay(5);
while (1)
{
/*
* 试图持有互斥锁,此时thread3持有,应把thread3的优先级提升到thread2相同
* 的优先级
*/
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
if (result == RT_EOK)
{
/* 释放互斥锁 */
rt_mutex_release(mutex);
}
}
rt_err_t result;
/* 先让低优先级线程运行 */
rt_thread_delay(5);
while (1)
{
/*
* 试图持有互斥锁,此时thread3持有,应把thread3的优先级提升到thread2相同
* 的优先级
*/
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
if (result == RT_EOK)
{
/* 释放互斥锁 */
rt_mutex_release(mutex);
}
}
}
/* 线程3入口 */
static void thread3_entry(void* parameter)
{
rt_tick_t tick;
rt_err_t result;
while (1)
{
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
}
/* 做一个长时间的循环,总共50个OS Tick */
tick = rt_tick_get();
while (rt_tick_get() - tick < 50) ;
rt_mutex_release(mutex);
rt_mutex_release(mutex);
}
rt_tick_t tick;
rt_err_t result;
while (1)
{
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
result = rt_mutex_take(mutex, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
}
/* 做一个长时间的循环,总共50个OS Tick */
tick = rt_tick_get();
while (rt_tick_get() - tick < 50) ;
rt_mutex_release(mutex);
rt_mutex_release(mutex);
}
}
int mutex_simple_init()
{
/* 创建互斥锁 */
mutex = rt_mutex_create("mutex", RT_IPC_FLAG_FIFO);
if (mutex == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread3_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 创建互斥锁 */
mutex = rt_mutex_create("mutex", RT_IPC_FLAG_FIFO);
if (mutex == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程1 */
tid1 = rt_thread_create("t1",
thread1_entry, RT_NULL, /* 线程入口是thread1_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
tid2 = rt_thread_create("t2",
thread2_entry, RT_NULL, /* 线程入口是thread2_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid2 != RT_NULL)
rt_thread_startup(tid2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程3 */
tid3 = rt_thread_create("t3",
thread3_entry, RT_NULL, /* 线程入口是thread3_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (tid3 != RT_NULL)
rt_thread_startup(tid3);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
if (mutex != RT_NULL)
{
rt_mutex_delete(mutex);
}
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid1 != RT_NULL && tid1->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid1);
if (tid2 != RT_NULL && tid2->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid2);
if (tid3 != RT_NULL && tid3->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid3);
if (mutex != RT_NULL)
{
rt_mutex_delete(mutex);
}
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_mutex_simple()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mutex_simple_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
mutex_simple_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_mutex_simple, sime mutex example);
......@@ -156,8 +156,8 @@ FINSH_FUNCTION_EXPORT(_tc_mutex_simple, sime mutex example);
/* 用户应用入口 */
int rt_application_init()
{
mutex_simple_init();
mutex_simple_init();
return 0;
return 0;
}
#endif
......@@ -12,9 +12,9 @@
/* 一个环形buffer的实现 */
struct rb
{
rt_uint16_t read_index, write_index;
rt_uint8_t *buffer_ptr;
rt_uint16_t buffer_size;
rt_uint16_t read_index, write_index;
rt_uint8_t *buffer_ptr;
rt_uint16_t buffer_size;
};
/* 指向信号量控制块的指针 */
......@@ -23,236 +23,236 @@ static rt_sem_t sem = RT_NULL;
static rt_thread_t tid = RT_NULL, worker = RT_NULL;
/* 环形buffer的内存块(用数组体现出来) */
#define BUFFER_SIZE 256
#define BUFFER_ITEM 32
#define BUFFER_SIZE 256
#define BUFFER_ITEM 32
static rt_uint8_t working_buffer[BUFFER_SIZE];
struct rb working_rb;
/* 初始化环形buffer,size指的是buffer的大小。注:这里并没对数据地址对齐做处理 */
static void rb_init(struct rb* rb, rt_uint8_t *pool, rt_uint16_t size)
{
RT_ASSERT(rb != RT_NULL);
RT_ASSERT(rb != RT_NULL);
/* 对读写指针清零*/
rb->read_index = rb->write_index = 0;
/* 对读写指针清零*/
rb->read_index = rb->write_index = 0;
/* 设置环形buffer的内存数据块 */
rb->buffer_ptr = pool;
rb->buffer_size = size;
/* 设置环形buffer的内存数据块 */
rb->buffer_ptr = pool;
rb->buffer_size = size;
}
/* 向环形buffer中写入数据 */
static rt_bool_t rb_put(struct rb* rb, const rt_uint8_t *ptr, rt_uint16_t length)
{
rt_size_t size;
/* 判断是否有足够的剩余空间 */
if (rb->read_index > rb->write_index)
size = rb->read_index - rb->write_index;
else
size = rb->buffer_size - rb->write_index + rb->read_index;
/* 没有多余的空间 */
if (size < length) return RT_FALSE;
if (rb->read_index > rb->write_index)
{
/* read_index - write_index 即为总的空余空间 */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
rb->write_index += length;
}
else
{
if (rb->buffer_size - rb->write_index > length)
{
/* write_index 后面剩余的空间有足够的长度 */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
rb->write_index += length;
}
else
{
/*
* write_index 后面剩余的空间不存在足够的长度,需要把部分数据复制到
* 前面的剩余空间中
*/
memcpy(&rb->buffer_ptr[rb->write_index], ptr,
rb->buffer_size - rb->write_index);
memcpy(&rb->buffer_ptr[0], &ptr[rb->buffer_size - rb->write_index],
length - (rb->buffer_size - rb->write_index));
rb->write_index = length - (rb->buffer_size - rb->write_index);
}
}
return RT_TRUE;
rt_size_t size;
/* 判断是否有足够的剩余空间 */
if (rb->read_index > rb->write_index)
size = rb->read_index - rb->write_index;
else
size = rb->buffer_size - rb->write_index + rb->read_index;
/* 没有多余的空间 */
if (size < length) return RT_FALSE;
if (rb->read_index > rb->write_index)
{
/* read_index - write_index 即为总的空余空间 */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
rb->write_index += length;
}
else
{
if (rb->buffer_size - rb->write_index > length)
{
/* write_index 后面剩余的空间有足够的长度 */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
rb->write_index += length;
}
else
{
/*
* write_index 后面剩余的空间不存在足够的长度,需要把部分数据复制到
* 前面的剩余空间中
*/
memcpy(&rb->buffer_ptr[rb->write_index], ptr,
rb->buffer_size - rb->write_index);
memcpy(&rb->buffer_ptr[0], &ptr[rb->buffer_size - rb->write_index],
length - (rb->buffer_size - rb->write_index));
rb->write_index = length - (rb->buffer_size - rb->write_index);
}
}
return RT_TRUE;
}
/* 从环形buffer中读出数据 */
static rt_bool_t rb_get(struct rb* rb, rt_uint8_t *ptr, rt_uint16_t length)
{
rt_size_t size;
/* 判断是否有足够的数据 */
if (rb->read_index > rb->write_index)
size = rb->buffer_size - rb->read_index + rb->write_index;
else
size = rb->write_index - rb->read_index;
/* 没有足够的数据 */
if (size < length) return RT_FALSE;
if (rb->read_index > rb->write_index)
{
if (rb->buffer_size - rb->read_index > length)
{
/* read_index的数据足够多,直接复制 */
memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
rb->read_index += length;
}
else
{
/* read_index的数据不够,需要分段复制 */
memcpy(ptr, &rb->buffer_ptr[rb->read_index],
rb->buffer_size - rb->read_index);
memcpy(&ptr[rb->buffer_size - rb->read_index], &rb->buffer_ptr[0],
length - rb->buffer_size + rb->read_index);
rb->read_index = length - rb->buffer_size + rb->read_index;
}
}
else
{
/*
* read_index要比write_index小,总的数据量够(前面已经有总数据量的判
* 断),直接复制出数据。
*/
memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
rb->read_index += length;
}
return RT_TRUE;
rt_size_t size;
/* 判断是否有足够的数据 */
if (rb->read_index > rb->write_index)
size = rb->buffer_size - rb->read_index + rb->write_index;
else
size = rb->write_index - rb->read_index;
/* 没有足够的数据 */
if (size < length) return RT_FALSE;
if (rb->read_index > rb->write_index)
{
if (rb->buffer_size - rb->read_index > length)
{
/* read_index的数据足够多,直接复制 */
memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
rb->read_index += length;
}
else
{
/* read_index的数据不够,需要分段复制 */
memcpy(ptr, &rb->buffer_ptr[rb->read_index],
rb->buffer_size - rb->read_index);
memcpy(&ptr[rb->buffer_size - rb->read_index], &rb->buffer_ptr[0],
length - rb->buffer_size + rb->read_index);
rb->read_index = length - rb->buffer_size + rb->read_index;
}
}
else
{
/*
* read_index要比write_index小,总的数据量够(前面已经有总数据量的判
* 断),直接复制出数据。
*/
memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
rb->read_index += length;
}
return RT_TRUE;
}
/* 生产者线程入口 */
static void thread_entry(void* parameter)
{
rt_bool_t result;
rt_uint8_t data_buffer[BUFFER_ITEM + 1];
while (1)
{
/* 持有信号量 */
rt_sem_take(sem, RT_WAITING_FOREVER);
/* 从环buffer中获得数据 */
result = rb_get(&working_rb, &data_buffer[0], BUFFER_ITEM);
/* 释放信号量 */
rt_sem_release(sem);
data_buffer[BUFFER_ITEM] = '\0';
if (result == RT_TRUE)
{
/* 获取数据成功,打印数据 */
rt_kprintf("%s\n", data_buffer);
}
/* 做一个5 OS Tick的休眠 */
rt_thread_delay(5);
}
rt_bool_t result;
rt_uint8_t data_buffer[BUFFER_ITEM + 1];
while (1)
{
/* 持有信号量 */
rt_sem_take(sem, RT_WAITING_FOREVER);
/* 从环buffer中获得数据 */
result = rb_get(&working_rb, &data_buffer[0], BUFFER_ITEM);
/* 释放信号量 */
rt_sem_release(sem);
data_buffer[BUFFER_ITEM] = '\0';
if (result == RT_TRUE)
{
/* 获取数据成功,打印数据 */
rt_kprintf("%s\n", data_buffer);
}
/* 做一个5 OS Tick的休眠 */
rt_thread_delay(5);
}
}
/* worker线程入口 */
static void worker_entry(void* parameter)
{
rt_bool_t result;
rt_uint32_t index, setchar;
rt_uint8_t data_buffer[BUFFER_ITEM];
setchar = 0x21;
while (1)
{
/* 构造数据 */
for(index = 0; index < BUFFER_ITEM; index++)
{
data_buffer[index] = setchar;
if (++setchar == 0x7f)
setchar = 0x21;
}
/* 持有信号量 */
rt_sem_take(sem, RT_WAITING_FOREVER);
/* 把数据放到环形buffer中 */
result = rb_put(&working_rb, &data_buffer[0], BUFFER_ITEM);
/* 释放信号量 */
rt_sem_release(sem);
/* 放入成功,做一个10 OS Tick的休眠 */
rt_thread_delay(10);
}
rt_bool_t result;
rt_uint32_t index, setchar;
rt_uint8_t data_buffer[BUFFER_ITEM];
setchar = 0x21;
while (1)
{
/* 构造数据 */
for(index = 0; index < BUFFER_ITEM; index++)
{
data_buffer[index] = setchar;
if (++setchar == 0x7f)
setchar = 0x21;
}
/* 持有信号量 */
rt_sem_take(sem, RT_WAITING_FOREVER);
/* 把数据放到环形buffer中 */
result = rb_put(&working_rb, &data_buffer[0], BUFFER_ITEM);
/* 释放信号量 */
rt_sem_release(sem);
/* 放入成功,做一个10 OS Tick的休眠 */
rt_thread_delay(10);
}
}
int semaphore_buffer_worker_init()
{
/* 初始化ring buffer */
rb_init(&working_rb, working_buffer, BUFFER_SIZE);
/* 创建信号量 */
sem = rt_sem_create("sem", 1, RT_IPC_FLAG_FIFO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程1 */
tid = rt_thread_create("thread",
thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
worker = rt_thread_create("worker",
worker_entry, RT_NULL, /* 线程入口是worker_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (worker != RT_NULL)
rt_thread_startup(worker);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化ring buffer */
rb_init(&working_rb, working_buffer, BUFFER_SIZE);
/* 创建信号量 */
sem = rt_sem_create("sem", 1, RT_IPC_FLAG_FIFO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程1 */
tid = rt_thread_create("thread",
thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
worker = rt_thread_create("worker",
worker_entry, RT_NULL, /* 线程入口是worker_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (worker != RT_NULL)
rt_thread_startup(worker);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除信号量 */
if (sem != RT_NULL)
rt_sem_delete(sem);
/* 删除信号量 */
if (sem != RT_NULL)
rt_sem_delete(sem);
/* 删除线程 */
if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid);
if (worker != RT_NULL && worker->stat != RT_THREAD_CLOSE)
rt_thread_delete(worker);
/* 删除线程 */
if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(tid);
if (worker != RT_NULL && worker->stat != RT_THREAD_CLOSE)
rt_thread_delete(worker);
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_semaphore_buffer_worker()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_buffer_worker_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_buffer_worker_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_semaphore_buffer_worker, a buffer worker with semaphore example);
......@@ -260,8 +260,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_buffer_worker, a buffer worker with semaphor
/* 用户应用入口 */
int rt_application_init()
{
semaphore_buffer_worker_init();
semaphore_buffer_worker_init();
return 0;
return 0;
}
#endif
......@@ -15,105 +15,112 @@ static rt_sem_t sem = RT_NULL;
/* 线程入口 */
static void thread_entry(void* parameter)
{
rt_err_t result;
rt_tick_t tick;
/* 获得当前的OS Tick */
tick = rt_tick_get();
/* 试图持有一个信号量,如果10个OS Tick依然没拿到,则超时返回 */
result = rt_sem_take(sem, 10);
if (result == -RT_ETIMEOUT)
{
/* 判断是否刚好过去10个OS Tick */
if (rt_tick_get() - tick != 10)
{
/* 如果失败,则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
rt_kprintf("take semaphore timeout\n");
}
else
{
/* 因为并没释放信号量,应该是超时返回,否则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
/* 释放一次信号量 */
rt_sem_release(sem);
/* 继续持有信号量,并永远等待直到持有到信号量 */
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
/* 返回不正确,测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
/* 测试成功 */
tc_done(TC_STAT_PASSED);
/* 删除信号量 */
rt_sem_delete(sem);
rt_err_t result;
rt_tick_t tick;
/* 获得当前的OS Tick */
tick = rt_tick_get();
/* 试图持有一个信号量,如果10个OS Tick依然没拿到,则超时返回 */
result = rt_sem_take(sem, 10);
if (result == -RT_ETIMEOUT)
{
rt_tick_t new_tick = rt_tick_get();
/* 可以有两个 tick 的误差 */
if (new_tick - tick >= 12)
{
rt_kprintf("tick error to large: expect: 10, get %d\n",
new_tick - tick);
/* 如果失败,则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
rt_kprintf("take semaphore timeout\n");
}
else
{
/* 因为并没释放信号量,应该是超时返回,否则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
/* 释放一次信号量 */
rt_sem_release(sem);
/* 继续持有信号量,并永远等待直到持有到信号量 */
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
/* 返回不正确,测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_delete(sem);
return;
}
/* 测试成功 */
tc_done(TC_STAT_PASSED);
/* 删除信号量 */
rt_sem_delete(sem);
}
int semaphore_dynamic_init()
{
/* 创建一个信号量,初始值是0 */
sem = rt_sem_create("sem", 0, RT_IPC_FLAG_FIFO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程 */
tid = rt_thread_create("thread",
thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 创建一个信号量,初始值是0 */
sem = rt_sem_create("sem", 0, RT_IPC_FLAG_FIFO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 创建线程 */
tid = rt_thread_create("thread",
thread_entry, RT_NULL, /* 线程入口是thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
{
rt_thread_delete(tid);
/* 删除信号量 */
rt_sem_delete(sem);
}
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
if (sem)
{
rt_sem_delete(sem);
sem = RT_NULL;
}
/* 删除线程 */
if (tid != RT_NULL && tid->stat != RT_THREAD_CLOSE)
{
rt_thread_delete(tid);
}
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_semaphore_dynamic()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_dynamic_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_dynamic_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_semaphore_dynamic, a dynamic semaphore example);
......@@ -121,8 +128,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_dynamic, a dynamic semaphore example);
/* 用户应用入口 */
int rt_application_init()
{
semaphore_dynamic_init();
semaphore_dynamic_init();
return 0;
return 0;
}
#endif
......@@ -6,123 +6,129 @@ static rt_uint8_t t1_count, t2_count;
static rt_thread_t t1, t2, worker;
static void thread1_entry(void* parameter)
{
rt_err_t result;
while (1)
{
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_done(TC_STAT_FAILED);
return;
}
t1_count ++;
rt_kprintf("thread1: got semaphore, count: %d\n", t1_count);
}
rt_err_t result;
while (1)
{
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_done(TC_STAT_FAILED);
return;
}
t1_count ++;
rt_kprintf("thread1: got semaphore, count: %d\n", t1_count);
}
}
static void thread2_entry(void* parameter)
{
rt_err_t result;
while (1)
{
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_done(TC_STAT_FAILED);
return;
}
t2_count ++;
rt_kprintf("thread2: got semaphore, count: %d\n", t2_count);
}
rt_err_t result;
while (1)
{
result = rt_sem_take(sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
tc_done(TC_STAT_FAILED);
return;
}
t2_count ++;
rt_kprintf("thread2: got semaphore, count: %d\n", t2_count);
}
}
static void worker_thread_entry(void* parameter)
{
rt_thread_delay(10);
rt_thread_delay(10);
while (1)
{
rt_sem_release(sem);
rt_thread_delay(5);
}
while (1)
{
rt_sem_release(sem);
rt_thread_delay(5);
}
}
int semaphore_priority_init()
{
sem = rt_sem_create("sem", 0, RT_IPC_FLAG_PRIO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
t1_count = t2_count = 0;
t1 = rt_thread_create("t1",
thread1_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (t1 != RT_NULL)
rt_thread_startup(t1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
t2 = rt_thread_create("t2",
thread2_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (t2 != RT_NULL)
rt_thread_startup(t2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
worker = rt_thread_create("worker",
worker_thread_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (worker != RT_NULL)
rt_thread_startup(worker);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
sem = rt_sem_create("sem", 0, RT_IPC_FLAG_PRIO);
if (sem == RT_NULL)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
t1_count = t2_count = 0;
t1 = rt_thread_create("t1",
thread1_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (t1 != RT_NULL)
rt_thread_startup(t1);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
t2 = rt_thread_create("t2",
thread2_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (t2 != RT_NULL)
rt_thread_startup(t2);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
worker = rt_thread_create("worker",
worker_thread_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (worker != RT_NULL)
rt_thread_startup(worker);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* lock scheduler */
rt_enter_critical();
/* delete t1, t2 and worker thread */
rt_thread_delete(t1);
rt_thread_delete(t2);
rt_thread_delete(worker);
if (t1_count > t2_count)
tc_done(TC_STAT_FAILED);
else
tc_done(TC_STAT_PASSED);
/* unlock scheduler */
rt_exit_critical();
/* lock scheduler */
rt_enter_critical();
/* delete t1, t2 and worker thread */
rt_thread_delete(t1);
rt_thread_delete(t2);
rt_thread_delete(worker);
if (sem)
{
rt_sem_delete(sem);
sem = RT_NULL;
}
if (t1_count > t2_count)
tc_done(TC_STAT_FAILED);
else
tc_done(TC_STAT_PASSED);
/* unlock scheduler */
rt_exit_critical();
}
int _tc_semaphore_priority()
{
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
semaphore_priority_init();
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
semaphore_priority_init();
return 50;
return 50;
}
FINSH_FUNCTION_EXPORT(_tc_semaphore_priority, a priority semaphore test);
#else
int rt_application_init()
{
semaphore_priority_init();
semaphore_priority_init();
return 0;
return 0;
}
#endif
......@@ -24,122 +24,126 @@ struct rt_semaphore sem_empty, sem_full;
/* 生成者线程入口 */
void producer_thread_entry(void* parameter)
{
int cnt = 0;
/* 运行100次 */
while( cnt < 100)
{
/* 获取一个空位 */
rt_sem_take(&sem_empty, RT_WAITING_FOREVER);
/* 修改array内容,上锁 */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
array[set%MAXSEM] = cnt + 1;
rt_kprintf("the producer generates a number: %d\n", array[set%MAXSEM]);
set++;
rt_sem_release(&sem_lock);
/* 发布一个满位 */
rt_sem_release(&sem_full);
cnt++;
/* 暂停一段时间 */
rt_thread_delay(50);
}
rt_kprintf("the producer exit!\n");
int cnt = 0;
/* 运行100次 */
while( cnt < 100)
{
/* 获取一个空位 */
rt_sem_take(&sem_empty, RT_WAITING_FOREVER);
/* 修改array内容,上锁 */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
array[set%MAXSEM] = cnt + 1;
rt_kprintf("the producer generates a number: %d\n", array[set%MAXSEM]);
set++;
rt_sem_release(&sem_lock);
/* 发布一个满位 */
rt_sem_release(&sem_full);
cnt++;
/* 暂停一段时间 */
rt_thread_delay(50);
}
rt_kprintf("the producer exit!\n");
}
/* 消费者线程入口 */
void consumer_thread_entry(void* parameter)
{
rt_uint32_t no;
rt_uint32_t sum;
rt_uint32_t no;
rt_uint32_t sum;
/* 第n个线程,由入口参数传进来 */
no = (rt_uint32_t)parameter;
/* 第n个线程,由入口参数传进来 */
no = (rt_uint32_t)parameter;
while(1)
{
/* 获取一个满位 */
rt_sem_take(&sem_full, RT_WAITING_FOREVER);
while(1)
{
/* 获取一个满位 */
rt_sem_take(&sem_full, RT_WAITING_FOREVER);
/* 临界区,上锁进行操作 */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
sum += array[get%MAXSEM];
rt_kprintf("the consumer[%d] get a number: %d\n", no, array[get%MAXSEM] );
get++;
rt_sem_release(&sem_lock);
/* 临界区,上锁进行操作 */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
sum += array[get%MAXSEM];
rt_kprintf("the consumer[%d] get a number: %d\n", no, array[get%MAXSEM] );
get++;
rt_sem_release(&sem_lock);
/* 释放一个空位 */
rt_sem_release(&sem_empty);
/* 释放一个空位 */
rt_sem_release(&sem_empty);
/* 生产者生产到100个数目,停止,消费者线程相应停止 */
if (get == 100) break;
/* 生产者生产到100个数目,停止,消费者线程相应停止 */
if (get == 100) break;
/* 暂停一小会时间 */
rt_thread_delay(10);
}
/* 暂停一小会时间 */
rt_thread_delay(10);
}
rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
rt_kprintf("the consumer[%d] exit!\n");
rt_kprintf("the consumer[%d] sum is %d \n ", no, sum);
rt_kprintf("the consumer[%d] exit!\n");
}
int semaphore_producer_consumer_init()
{
/* 初始化3个信号量 */
rt_sem_init(&sem_lock , "lock", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_empty, "empty", MAXSEM, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_full , "full", 0, RT_IPC_FLAG_FIFO);
/* 创建线程1 */
producer_tid = rt_thread_create("producer",
producer_thread_entry, RT_NULL, /* 线程入口是producer_thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (producer_tid != RT_NULL)
rt_thread_startup(producer_tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
consumer_tid = rt_thread_create("consumer",
consumer_thread_entry, RT_NULL, /* 线程入口是consumer_thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (consumer_tid != RT_NULL)
rt_thread_startup(consumer_tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 初始化3个信号量 */
rt_sem_init(&sem_lock , "lock", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_empty, "empty", MAXSEM, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_full , "full", 0, RT_IPC_FLAG_FIFO);
/* 创建线程1 */
producer_tid = rt_thread_create("producer",
producer_thread_entry, RT_NULL, /* 线程入口是producer_thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (producer_tid != RT_NULL)
rt_thread_startup(producer_tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程2 */
consumer_tid = rt_thread_create("consumer",
consumer_thread_entry, RT_NULL, /* 线程入口是consumer_thread_entry, 入口参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY + 1, THREAD_TIMESLICE);
if (consumer_tid != RT_NULL)
rt_thread_startup(consumer_tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 删除线程 */
if (producer_tid != RT_NULL && producer_tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(producer_tid);
if (consumer_tid != RT_NULL && consumer_tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(consumer_tid);
rt_sem_detach(&sem_lock);
rt_sem_detach(&sem_empty);
rt_sem_detach(&sem_full);
/* 调度器解锁 */
rt_exit_critical();
/* 删除线程 */
if (producer_tid != RT_NULL && producer_tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(producer_tid);
if (consumer_tid != RT_NULL && consumer_tid->stat != RT_THREAD_CLOSE)
rt_thread_delete(consumer_tid);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_semaphore_producer_consumer()
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_producer_consumer_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_producer_consumer_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_semaphore_producer_consumer, producer and consumer example);
......@@ -147,8 +151,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_producer_consumer, producer and consumer exa
/* 用户应用入口 */
int rt_application_init()
{
semaphore_producer_consumer_init();
semaphore_producer_consumer_init();
return 0;
return 0;
}
#endif
......@@ -17,107 +17,111 @@ static struct rt_semaphore sem;
/* 线程入口 */
static void thread_entry(void* parameter)
{
rt_err_t result;
rt_tick_t tick;
/* 获得当前的OS Tick */
tick = rt_tick_get();
/* 试图持有信号量,最大等待10个OS Tick后返回 */
result = rt_sem_take(&sem, 10);
if (result == -RT_ETIMEOUT)
{
/* 超时后判断是否刚好是10个OS Tick */
if (rt_tick_get() - tick != 10)
{
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
rt_kprintf("take semaphore timeout\n");
}
else
{
/* 因为没有其他地方是否信号量,所以不应该成功持有信号量,否则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
/* 释放一次信号量 */
rt_sem_release(&sem);
/* 永久等待方式持有信号量 */
result = rt_sem_take(&sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
/* 不成功则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
/* 测试通过 */
tc_done(TC_STAT_PASSED);
/* 脱离信号量对象 */
rt_sem_detach(&sem);
rt_err_t result;
rt_tick_t tick;
/* 获得当前的OS Tick */
tick = rt_tick_get();
/* 试图持有信号量,最大等待10个OS Tick后返回 */
result = rt_sem_take(&sem, 10);
if (result == -RT_ETIMEOUT)
{
rt_tick_t new_tick = rt_tick_get();
/* 可以有两个 tick 的误差 */
if (new_tick - tick >= 12)
{
rt_kprintf("tick error to large: expect: 10, get %d\n",
new_tick - tick);
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
rt_kprintf("take semaphore timeout\n");
}
else
{
/* 因为没有其他地方是否信号量,所以不应该成功持有信号量,否则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
/* 释放一次信号量 */
rt_sem_release(&sem);
/* 永久等待方式持有信号量 */
result = rt_sem_take(&sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
/* 不成功则测试失败 */
tc_done(TC_STAT_FAILED);
rt_sem_detach(&sem);
return;
}
/* 测试通过 */
tc_done(TC_STAT_PASSED);
/* 脱离信号量对象 */
rt_sem_detach(&sem);
}
int semaphore_static_init(void)
{
rt_err_t result;
/* 初始化信号量,初始值是0 */
result = rt_sem_init(&sem, "sem", 0, RT_IPC_FLAG_FIFO);
if (result != RT_EOK)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 初始化线程1 */
result = rt_thread_init(&thread, "thread", /* 线程名:thread */
thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是RT_NULL*/
&thread_stack[0], sizeof(thread_stack), /* 线程栈是thread_stack */
THREAD_PRIORITY, 10);
if (result == RT_EOK) /* 如果返回正确,启动线程1 */
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
rt_err_t result;
/* 初始化信号量,初始值是0 */
result = rt_sem_init(&sem, "sem", 0, RT_IPC_FLAG_FIFO);
if (result != RT_EOK)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
/* 初始化线程1 */
result = rt_thread_init(&thread, "thread", /* 线程名:thread */
thread_entry, RT_NULL, /* 线程的入口是thread_entry,入口参数是RT_NULL*/
&thread_stack[0], sizeof(thread_stack), /* 线程栈是thread_stack */
THREAD_PRIORITY, 10);
if (result == RT_EOK) /* 如果返回正确,启动线程1 */
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup(void)
{
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 调度器上锁,上锁后,将不再切换到其他线程,仅响应中断 */
rt_enter_critical();
/* 执行线程脱离 */
if (thread.stat != RT_THREAD_CLOSE)
{
rt_thread_detach(&thread);
/* 执行线程脱离 */
if (thread.stat != RT_THREAD_CLOSE)
{
rt_thread_detach(&thread);
/* 执行信号量对象脱离 */
rt_sem_detach(&sem);
}
/* 执行信号量对象脱离 */
rt_sem_detach(&sem);
}
/* 调度器解锁 */
rt_exit_critical();
/* 调度器解锁 */
rt_exit_critical();
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
/* 设置TestCase状态 */
tc_done(TC_STAT_PASSED);
}
int _tc_semaphore_static(void)
{
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_static_init();
/* 设置TestCase清理回调函数 */
tc_cleanup(_tc_cleanup);
semaphore_static_init();
/* 返回TestCase运行的最长时间 */
return 100;
/* 返回TestCase运行的最长时间 */
return 100;
}
/* 输出函数命令到finsh shell中 */
FINSH_FUNCTION_EXPORT(_tc_semaphore_static, a static semaphore example);
......@@ -125,8 +129,8 @@ FINSH_FUNCTION_EXPORT(_tc_semaphore_static, a static semaphore example);
/* 用户应用入口 */
int rt_application_init(void)
{
semaphore_static_init();
semaphore_static_init();
return 0;
return 0;
}
#endif
......@@ -4,8 +4,8 @@
#endif
#ifdef RT_USING_TC
#define TC_PRIORITY 25
#define TC_STACK_SIZE 0x400
#define TC_PRIORITY 25
#define TC_STACK_SIZE 0x400
static rt_uint8_t _tc_stat;
static struct rt_semaphore _tc_sem;
......@@ -18,158 +18,180 @@ static void (*_tc_cleanup)(void) = RT_NULL;
static rt_uint32_t _tc_scale = 1;
FINSH_VAR_EXPORT(_tc_scale, finsh_type_int, the testcase timer timeout scale)
static rt_uint32_t _tc_loop;
void tc_thread_entry(void* parameter)
{
struct finsh_syscall* index;
/* create tc semaphore */
rt_sem_init(&_tc_sem, "tc", 0, RT_IPC_FLAG_FIFO);
while (_tc_stat & TC_STAT_RUNNING)
{
for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
{
/* search testcase */
if (rt_strstr(index->name, _tc_prefix) == index->name)
{
long tick;
_tc_current = index->name + 4;
rt_kprintf("Run TestCase: %s\n", _tc_current);
_tc_stat = TC_STAT_PASSED | TC_STAT_RUNNING;
tick = index->func();
if (tick > 0)
{
rt_sem_take(&_tc_sem, tick * _tc_scale);
if (_tc_cleanup != RT_NULL)
{
/* perform testcase cleanup */
_tc_cleanup();
_tc_cleanup = RT_NULL;
}
rt_sem_trytake(&_tc_sem);/* by nl1031 */
if (_tc_stat & TC_STAT_FAILED)
rt_kprintf("TestCase[%s] failed\n", _tc_current);
else
rt_kprintf("TestCase[%s] passed\n", _tc_current);
}
else
{
if (_tc_cleanup != RT_NULL)
{
/* perform testcase cleanup */
_tc_cleanup();
_tc_cleanup = RT_NULL;
}
}
}
}
}
rt_kprintf("RT-Thread TestCase Running Done!\n");
/* detach tc semaphore */
rt_sem_detach(&_tc_sem);
unsigned int fail_count = 0;
struct finsh_syscall* index;
/* create tc semaphore */
rt_sem_init(&_tc_sem, "tc", 0, RT_IPC_FLAG_FIFO);
do {
for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
{
/* search testcase */
if (rt_strstr(index->name, _tc_prefix) == index->name)
{
long tick;
_tc_current = index->name + 4;
rt_kprintf("Run TestCase: %s\n", _tc_current);
_tc_stat = TC_STAT_PASSED | TC_STAT_RUNNING;
tick = index->func();
if (tick > 0)
{
/* Make sure we are going to be blocked. */
rt_sem_control(&_tc_sem, RT_IPC_CMD_RESET, 0);
rt_sem_take(&_tc_sem, tick * _tc_scale);
}
if (_tc_cleanup != RT_NULL)
{
/* perform testcase cleanup */
_tc_cleanup();
_tc_cleanup = RT_NULL;
}
if (_tc_stat & TC_STAT_RUNNING)
{
rt_kprintf("TestCase[%s] exit with stat TC_STAT_RUNNING."
" Please fix the TC.\n",
_tc_current);
/* If the TC forgot to clear the flag, we do it. */
_tc_stat &= ~TC_STAT_RUNNING;
}
if (_tc_stat & TC_STAT_FAILED)
{
rt_kprintf("TestCase[%s] failed\n", _tc_current);
fail_count++;
}
else
{
rt_kprintf("TestCase[%s] passed\n", _tc_current);
}
}
}
} while (_tc_loop);
rt_kprintf("RT-Thread TestCase Running Done!\n");
if (fail_count)
{
rt_kprintf("%d tests failed\n", fail_count);
}
else
{
rt_kprintf("All tests passed\n");
}
/* detach tc semaphore */
rt_sem_detach(&_tc_sem);
}
void tc_stop()
{
_tc_stat &= ~TC_STAT_RUNNING;
rt_thread_delay(RT_TICK_PER_SECOND/2);
if (_tc_thread.stat != RT_THREAD_INIT)
{
/* lock scheduler */
rt_enter_critical();
/* detach old tc thread */
rt_thread_detach(&_tc_thread);
rt_sem_detach(&_tc_sem);
/* unlock scheduler */
rt_exit_critical();
}
rt_thread_delay(RT_TICK_PER_SECOND/2);
_tc_loop = 0;
rt_thread_delay(10 * RT_TICK_PER_SECOND);
if (_tc_thread.stat != RT_THREAD_INIT)
{
/* lock scheduler */
rt_enter_critical();
/* detach old tc thread */
rt_thread_detach(&_tc_thread);
rt_sem_detach(&_tc_sem);
/* unlock scheduler */
rt_exit_critical();
}
rt_thread_delay(RT_TICK_PER_SECOND/2);
}
FINSH_FUNCTION_EXPORT(tc_stop, stop testcase thread);
void tc_done(rt_uint8_t stat)
{
_tc_stat |= stat;
_tc_stat &= ~TC_STAT_RUNNING;
_tc_stat |= stat;
_tc_stat &= ~TC_STAT_RUNNING;
/* release semaphore */
rt_sem_release(&_tc_sem);
/* release semaphore */
rt_sem_release(&_tc_sem);
}
void tc_stat(rt_uint8_t stat)
{
if (stat & TC_STAT_FAILED)
{
rt_kprintf("TestCases[%s] failed\n", _tc_current);
}
_tc_stat |= stat;
if (stat & TC_STAT_FAILED)
{
rt_kprintf("TestCases[%s] failed\n", _tc_current);
}
_tc_stat |= stat;
}
void tc_cleanup(void (*cleanup)())
{
_tc_cleanup = cleanup;
_tc_cleanup = cleanup;
}
void tc_start(const char* tc_prefix)
{
rt_err_t result;
/* tesecase prefix is null */
if (tc_prefix == RT_NULL)
{
rt_kprintf("TestCase Usage: tc_start(prefix)\n\n");
rt_kprintf("list_tc() can list all testcases.\n");
return ;
}
/* init tc thread */
if (_tc_stat & TC_STAT_RUNNING)
{
/* stop old tc thread */
tc_stop();
}
rt_memset(_tc_prefix, 0, sizeof(_tc_prefix));
rt_snprintf(_tc_prefix, sizeof(_tc_prefix), "_tc_%s", tc_prefix);
result = rt_thread_init(&_tc_thread, "tc",
tc_thread_entry, RT_NULL,
&_tc_stack[0], sizeof(_tc_stack),
TC_PRIORITY - 3, 5);
/* set tc stat */
_tc_stat = TC_STAT_RUNNING | TC_STAT_FAILED;
if (result == RT_EOK)
rt_thread_startup(&_tc_thread);
rt_err_t result;
/* tesecase prefix is null */
if (tc_prefix == RT_NULL)
{
rt_kprintf("TestCase Usage: tc_start(prefix)\n\n");
rt_kprintf("list_tc() can list all testcases.\n");
return ;
}
/* init tc thread */
if (_tc_stat & TC_STAT_RUNNING)
{
/* stop old tc thread */
tc_stop();
}
rt_memset(_tc_prefix, 0, sizeof(_tc_prefix));
rt_snprintf(_tc_prefix, sizeof(_tc_prefix), "_tc_%s", tc_prefix);
result = rt_thread_init(&_tc_thread, "tc",
tc_thread_entry, RT_NULL,
&_tc_stack[0], sizeof(_tc_stack),
TC_PRIORITY - 3, 5);
/* set tc stat */
_tc_stat = TC_STAT_RUNNING | TC_STAT_FAILED;
if (result == RT_EOK)
rt_thread_startup(&_tc_thread);
}
FINSH_FUNCTION_EXPORT(tc_start, start testcase with testcase prefix or name);
void tc_loop(const char *tc_prefix)
{
_tc_loop = 1;
tc_start(tc_prefix);
}
FINSH_FUNCTION_EXPORT(tc_loop, start testcase with testcase prefix or name in loop mode);
void list_tc()
{
struct finsh_syscall* index;
rt_kprintf("TestCases List:\n");
for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
{
/* search testcase */
if (rt_strstr(index->name, "_tc_") == index->name)
{
struct finsh_syscall* index;
rt_kprintf("TestCases List:\n");
for (index = _syscall_table_begin; index < _syscall_table_end; FINSH_NEXT_SYSCALL(index))
{
/* search testcase */
if (rt_strstr(index->name, "_tc_") == index->name)
{
#ifdef FINSH_USING_DESCRIPTION
rt_kprintf("%-16s -- %s\n", index->name + 4, index->desc);
rt_kprintf("%-16s -- %s\n", index->name + 4, index->desc);
#else
rt_kprintf("%s\n", index->name + 4);
rt_kprintf("%s\n", index->name + 4);
#endif
}
}
}
}
}
FINSH_FUNCTION_EXPORT(list_tc, list all testcases);
#endif
......
......@@ -11,19 +11,19 @@
#endif
#if RT_THREAD_PRIORITY_MAX == 8
#define THREAD_PRIORITY 6
#define THREAD_PRIORITY 6
#elif RT_THREAD_PRIORITY_MAX == 32
#define THREAD_PRIORITY 25
#define THREAD_PRIORITY 25
#elif RT_THREAD_PRIORITY_MAX == 256
#define THREAD_PRIORITY 200
#define THREAD_PRIORITY 200
#endif
#define THREAD_STACK_SIZE 512
#define THREAD_TIMESLICE 5
#define THREAD_STACK_SIZE 512
#define THREAD_TIMESLICE 5
#define TC_STAT_END 0x00
#define TC_STAT_RUNNING 0x01
#define TC_STAT_FAILED 0x10
#define TC_STAT_PASSED 0x00
#define TC_STAT_END 0x00
#define TC_STAT_RUNNING 0x01
#define TC_STAT_FAILED 0x10
#define TC_STAT_PASSED 0x00
#ifdef RT_USING_TC
void tc_start(const char* tc_prefix);
......
......@@ -4,59 +4,59 @@
static rt_thread_t tid = RT_NULL;
static void sample_thread(void* parameter)
{
rt_kprintf("I'm sample!\n");
rt_kprintf("I'm sample!\n");
}
static void sample_thread_cleanup(struct rt_thread *p)
{
tid = RT_NULL;
tc_done(TC_STAT_PASSED);
tid = RT_NULL;
tc_done(TC_STAT_PASSED);
}
int sample_init()
{
tid = rt_thread_create("t",
sample_thread, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
tid->cleanup = sample_thread_cleanup;
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
tid = rt_thread_create("t",
sample_thread, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
tid->cleanup = sample_thread_cleanup;
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
return 0;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* lock scheduler */
rt_enter_critical();
/* delete thread */
if (tid != RT_NULL)
{
rt_kprintf("tid1 is bad\n");
tc_stat(TC_STAT_FAILED);
}
/* unlock scheduler */
rt_exit_critical();
/* lock scheduler */
rt_enter_critical();
/* delete thread */
if (tid != RT_NULL)
{
rt_kprintf("tid1 is bad\n");
tc_stat(TC_STAT_FAILED);
}
/* unlock scheduler */
rt_exit_critical();
}
int _tc_sample()
{
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
sample_init();
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
sample_init();
return 25;
return 25;
}
FINSH_FUNCTION_EXPORT(_tc_sample, a thread testcase example);
#else
int rt_application_init()
{
sample_init();
sample_init();
return 0;
return 0;
}
#endif
......@@ -8,63 +8,63 @@ static struct rt_thread thread;
static char thread_stack[THREAD_STACK_SIZE];
static void thread_entry(void* parameter)
{
rt_tick_t tick;
rt_kprintf("thread inited ok\n");
rt_tick_t tick;
rt_kprintf("thread inited ok\n");
rt_kprintf("thread delay 10 tick\n");
tick = rt_tick_get();
rt_thread_delay(10);
if (rt_tick_get() - tick > 10)
{
tc_done(TC_STAT_FAILED);
return;
}
rt_kprintf("thread delay 10 tick\n");
tick = rt_tick_get();
rt_thread_delay(10);
if (rt_tick_get() - tick > 11)
{
tc_done(TC_STAT_FAILED);
return;
}
rt_kprintf("thread delay 15 tick\n");
tick = rt_tick_get();
rt_thread_delay(15);
if (rt_tick_get() - tick > 15)
{
tc_done(TC_STAT_FAILED);
return;
}
rt_kprintf("thread delay 15 tick\n");
tick = rt_tick_get();
rt_thread_delay(15);
if (rt_tick_get() - tick > 16)
{
tc_done(TC_STAT_FAILED);
return;
}
rt_kprintf("thread exit\n");
rt_kprintf("thread exit\n");
tc_done(TC_STAT_PASSED);
tc_done(TC_STAT_PASSED);
}
rt_err_t thread_delay_init()
{
rt_err_t result;
rt_err_t result;
result = rt_thread_init(&thread,
"test",
thread_entry, RT_NULL,
&thread_stack[0], sizeof(thread_stack),
THREAD_PRIORITY, 10);
result = rt_thread_init(&thread,
"test",
thread_entry, RT_NULL,
&thread_stack[0], sizeof(thread_stack),
THREAD_PRIORITY, 10);
if (result == RT_EOK)
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
if (result == RT_EOK)
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return result;
return result;
}
#ifdef RT_USING_TC
int _tc_thread_delay()
{
thread_delay_init();
thread_delay_init();
return 30;
return 30;
}
FINSH_FUNCTION_EXPORT(_tc_thread_delay, a thread delay test);
#else
int rt_application_init()
{
thread_delay_init();
thread_delay_init();
return 0;
return 0;
}
#endif
......@@ -15,130 +15,128 @@ static rt_thread_t tid1 = RT_NULL, tid2 = RT_NULL;
/* 线程1的入口函数 */
static void thread1_entry(void* parameter)
{
rt_uint32_t count = 0;
while (1)
{
/* 线程1采用低优先级运行,一直打印计数值 */
// rt_kprintf("thread count: %d\n", count ++);
count ++;
}
rt_uint32_t count = 0;
while (1)
{
/* 线程1采用低优先级运行,一直打印计数值 */
// rt_kprintf("thread count: %d\n", count ++);
count ++;
}
}
static void thread1_cleanup(struct rt_thread *tid)
{
if (tid != tid1)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return ;
}
rt_kprintf("thread1 end\n");
tid1 = RT_NULL;
if (tid != tid1)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return ;
}
rt_kprintf("thread1 end\n");
tid1 = RT_NULL;
}
/* 线程2的入口函数 */
static void thread2_entry(void* parameter)
{
/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
/* 线程2启动后先睡眠10个OS Tick */
rt_thread_delay(10);
/*
* 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
* 队列
*/
rt_thread_delete(tid1);
/*
* 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
* idle线程将执行真正的线程1控制块和线程栈的删除
*/
rt_thread_delay(10);
/* 线程2拥有较高的优先级,以抢占线程1而获得执行 */
/* 线程2启动后先睡眠10个OS Tick */
rt_thread_delay(RT_TICK_PER_SECOND);
/*
* 线程2唤醒后直接删除线程1,删除线程1后,线程1自动脱离就绪线程
* 队列
*/
rt_thread_delete(tid1);
/*
* 线程2继续休眠10个OS Tick然后退出,线程2休眠后应切换到idle线程
* idle线程将执行真正的线程1控制块和线程栈的删除
*/
rt_thread_delay(RT_TICK_PER_SECOND);
}
static void thread2_cleanup(struct rt_thread *tid)
{
/*
* 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
* 程中释放)
*/
if (tid != tid2)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return ;
}
rt_kprintf("thread2 end\n");
tid2 = RT_NULL;
tc_done(TC_STAT_PASSED);
/*
* 线程2运行结束后也将自动被删除(线程控制块和线程栈在idle线
* 程中释放)
*/
if (tid != tid2)
{
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return ;
}
rt_kprintf("thread2 end\n");
tid2 = RT_NULL;
tc_done(TC_STAT_PASSED);
}
/* 线程删除示例的初始化 */
int thread_delete_init()
{
/* 创建线程1 */
tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
thread1_entry, RT_NULL, /* 入口是thread1_entry,参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
{
tid1->cleanup = thread1_cleanup;
rt_thread_startup(tid1);
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程1 */
tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
thread2_entry, RT_NULL, /* 入口是thread2_entry,参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
{
tid2->cleanup = thread2_cleanup;
rt_thread_startup(tid2);
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
/* 创建线程1 */
tid1 = rt_thread_create("t1", /* 线程1的名称是t1 */
thread1_entry, RT_NULL, /* 入口是thread1_entry,参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid1 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
{
tid1->cleanup = thread1_cleanup;
rt_thread_startup(tid1);
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
/* 创建线程1 */
tid2 = rt_thread_create("t2", /* 线程1的名称是t2 */
thread2_entry, RT_NULL, /* 入口是thread2_entry,参数是RT_NULL */
THREAD_STACK_SIZE, THREAD_PRIORITY - 1, THREAD_TIMESLICE);
if (tid2 != RT_NULL) /* 如果获得线程控制块,启动这个线程 */
{
tid2->cleanup = thread2_cleanup;
rt_thread_startup(tid2);
}
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 10 * RT_TICK_PER_SECOND;
}
#ifdef RT_USING_TC
static void _tc_cleanup()
{
/* lock scheduler */
rt_enter_critical();
/* delete thread */
if (tid1 != RT_NULL)
{
rt_kprintf("tid1 is bad\n");
tc_stat(TC_STAT_FAILED);
}
if (tid2 != RT_NULL)
{
rt_kprintf("tid2 is bad\n");
tc_stat(TC_STAT_FAILED);
}
/* unlock scheduler */
rt_exit_critical();
/* lock scheduler */
rt_enter_critical();
/* delete thread */
if (tid1 != RT_NULL)
{
rt_kprintf("tid1 is %p, should be NULL\n", tid1);
tc_stat(TC_STAT_FAILED);
}
if (tid2 != RT_NULL)
{
rt_kprintf("tid2 is %p, should be NULL\n", tid2);
tc_stat(TC_STAT_FAILED);
}
/* unlock scheduler */
rt_exit_critical();
}
int _tc_thread_delete()
{
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
thread_delete_init();
return 27;
/* set tc cleanup */
tc_cleanup(_tc_cleanup);
return thread_delete_init();
}
FINSH_FUNCTION_EXPORT(_tc_thread_delete, a thread delete example);
#else
int rt_application_init()
{
thread_delete_init();
thread_delete_init();
return 0;
return 0;
}
#endif
此差异已折叠。
......@@ -3,42 +3,42 @@
static void thread_entry(void* parameter)
{
rt_kprintf("thread dynamicly created ok\n");
rt_thread_delay(10);
rt_kprintf("thread exit\n");
rt_kprintf("thread dynamicly created ok\n");
rt_thread_delay(10);
rt_kprintf("thread exit\n");
tc_done(TC_STAT_PASSED);
tc_done(TC_STAT_PASSED);
}
int thread_dynamic_init()
{
rt_thread_t tid;
rt_thread_t tid;
tid = rt_thread_create("test",
thread_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
tid = rt_thread_create("test",
thread_entry, RT_NULL,
THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_TIMESLICE);
if (tid != RT_NULL)
rt_thread_startup(tid);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return 0;
return 0;
}
#ifdef RT_USING_TC
int _tc_thread_dynamic()
{
thread_dynamic_init();
thread_dynamic_init();
return 20;
return 20;
}
FINSH_FUNCTION_EXPORT(_tc_thread_dynamic, a dynamic thread test);
#else
int rt_application_init()
{
thread_dynamic_init();
thread_dynamic_init();
return 0;
return 0;
}
#endif
此差异已折叠。
此差异已折叠。
......@@ -8,45 +8,45 @@ static struct rt_thread thread;
static char thread_stack[THREAD_STACK_SIZE];
static void thread_entry(void* parameter)
{
rt_kprintf("thread staticly inited ok\n");
rt_thread_delay(10);
rt_kprintf("thread exit\n");
rt_kprintf("thread staticly inited ok\n");
rt_thread_delay(10);
rt_kprintf("thread exit\n");
tc_done(TC_STAT_PASSED);
tc_done(TC_STAT_PASSED);
}
rt_err_t thread_static_init()
{
rt_err_t result;
rt_err_t result;
result = rt_thread_init(&thread,
"test",
thread_entry, RT_NULL,
&thread_stack[0], sizeof(thread_stack),
THREAD_PRIORITY, 10);
result = rt_thread_init(&thread,
"test",
thread_entry, RT_NULL,
&thread_stack[0], sizeof(thread_stack),
THREAD_PRIORITY, 10);
if (result == RT_EOK)
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
if (result == RT_EOK)
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return result;
return result;
}
#ifdef RT_USING_TC
int _tc_thread_static()
{
thread_static_init();
thread_static_init();
return 20;
return 20;
}
FINSH_FUNCTION_EXPORT(_tc_thread_static, a static thread test);
#else
int rt_application_init()
{
thread_static_init();
thread_static_init();
return 0;
return 0;
}
#endif
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -173,6 +173,7 @@ void rt_schedule_remove_thread(struct rt_thread *thread);
void rt_enter_critical(void);
void rt_exit_critical(void);
rt_uint16_t rt_critical_level(void);
#ifdef RT_USING_HOOK
void rt_scheduler_sethook(void (*hook)(rt_thread_t from, rt_thread_t to));
......
......@@ -22,6 +22,8 @@
* 2006-03-23 Bernard the first version
* 2010-11-10 Bernard add cleanup callback function in thread exit.
* 2012-12-29 Bernard fix compiling warning.
* 2013-12-21 Grissiom let rt_thread_idle_excute loop until there is no
* dead thread.
*/
#include <rthw.h>
......@@ -72,8 +74,9 @@ void rt_thread_idle_sethook(void (*hook)(void))
*/
void rt_thread_idle_excute(void)
{
/* check the defunct thread list */
if (!rt_list_isempty(&rt_thread_defunct))
/* Loop until there is no dead thread. So one call to rt_thread_idle_excute
* will do all the cleanups. */
while (!rt_list_isempty(&rt_thread_defunct))
{
rt_base_t lock;
rt_thread_t thread;
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册