dm9000.c 17.2 KB
Newer Older
B
bernard.xiong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#include <rtthread.h>
#include <netif/ethernetif.h>

#include "dm9000a.h"

// #define DM9000_DEBUG		1
#if DM9000_DEBUG
#define DM9000_TRACE	rt_kprintf
#else
#define DM9000_TRACE(...)
#endif

/*
 * DM9000 interrupt line is connected to PF7
 */
//--------------------------------------------------------

#define DM9000_PHY          0x40    /* PHY address 0x01 */
#define RST_1()             GPIO_SetBits(GPIOF,GPIO_Pin_6)
#define RST_0()             GPIO_ResetBits(GPIOF,GPIO_Pin_6)

#define MAX_ADDR_LEN 6
enum DM9000_PHY_mode
{
    DM9000_10MHD = 0, DM9000_100MHD = 1,
    DM9000_10MFD = 4, DM9000_100MFD = 5,
    DM9000_AUTO  = 8, DM9000_1M_HPNA = 0x10
};

enum DM9000_TYPE
{
    TYPE_DM9000E,
    TYPE_DM9000A,
    TYPE_DM9000B
};

struct rt_dm9000_eth
{
    /* inherit from ethernet device */
    struct eth_device parent;

    enum DM9000_TYPE type;
	enum DM9000_PHY_mode mode;

    rt_uint8_t imr_all;

    rt_uint8_t packet_cnt;                  /* packet I or II */
    rt_uint16_t queue_packet_len;           /* queued packet (packet II) */

    /* interface address info. */
    rt_uint8_t  dev_addr[MAX_ADDR_LEN];		/* hw address	*/
};
static struct rt_dm9000_eth dm9000_device;
static struct rt_semaphore sem_ack, sem_lock;

void rt_dm9000_isr(void);

static void delay_ms(rt_uint32_t ms)
{
    rt_uint32_t len;
    for (;ms > 0; ms --)
        for (len = 0; len < 100; len++ );
}

/* Read a byte from I/O port */
rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
{
    DM9000_IO = reg;
    return (rt_uint8_t) DM9000_DATA;
}

/* Write a byte to I/O port */
rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
{
    DM9000_IO = reg;
    DM9000_DATA = value;
}

/* Read a word from phyxcer */
rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
{
    rt_uint16_t val;

    /* Fill the phyxcer register into REG_0C */
    dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
    dm9000_io_write(DM9000_EPCR, 0xc);	/* Issue phyxcer read command */

    delay_ms(100);		/* Wait read complete */

    dm9000_io_write(DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
    val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);

    return val;
}

/* Write a word to phyxcer */
rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
{
    /* Fill the phyxcer register into REG_0C */
    dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);

    /* Fill the written data into REG_0D & REG_0E */
    dm9000_io_write(DM9000_EPDRL, (value & 0xff));
    dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
    dm9000_io_write(DM9000_EPCR, 0xa);	/* Issue phyxcer write command */

    delay_ms(500);		/* Wait write complete */

    dm9000_io_write(DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
}

/* Set PHY operationg mode */
rt_inline void phy_mode_set(rt_uint32_t media_mode)
{
    rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
    if (!(media_mode & DM9000_AUTO))
    {
        switch (media_mode)
        {
        case DM9000_10MHD:
            phy_reg4 = 0x21;
            phy_reg0 = 0x0000;
            break;
        case DM9000_10MFD:
            phy_reg4 = 0x41;
            phy_reg0 = 0x1100;
            break;
        case DM9000_100MHD:
            phy_reg4 = 0x81;
            phy_reg0 = 0x2000;
            break;
        case DM9000_100MFD:
            phy_reg4 = 0x101;
            phy_reg0 = 0x3100;
            break;
        }
        phy_write(4, phy_reg4);	/* Set PHY media mode */
        phy_write(0, phy_reg0);	/*  Tmp */
    }

    dm9000_io_write(DM9000_GPCR, 0x01);	/* Let GPIO0 output */
    dm9000_io_write(DM9000_GPR, 0x00);	/* Enable PHY */
}

/* interrupt service routine */
void rt_dm9000_isr()
{
    rt_uint16_t int_status;
    rt_uint16_t last_io;

    last_io = DM9000_IO;

    /* Disable all interrupts */
    dm9000_io_write(DM9000_IMR, IMR_PAR);

    /* Got DM9000 interrupt status */
    int_status = dm9000_io_read(DM9000_ISR);               /* Got ISR */
    dm9000_io_write(DM9000_ISR, int_status);    /* Clear ISR status */

	DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);

    /* receive overflow */
    if (int_status & ISR_ROS)
    {
        rt_kprintf("overflow\n");
    }

    if (int_status & ISR_ROOS)
    {
        rt_kprintf("overflow counter overflow\n");
    }

    /* Received the coming packet */
    if (int_status & ISR_PRS)
    {
	    /* disable receive interrupt */
	    dm9000_device.imr_all = IMR_PAR | IMR_PTM;

        /* a frame has been received */
        eth_device_ready(&(dm9000_device.parent));
    }

    /* Transmit Interrupt check */
    if (int_status & ISR_PTS)
    {
        /* transmit done */
        int tx_status = dm9000_io_read(DM9000_NSR);    /* Got TX status */

        if (tx_status & (NSR_TX2END | NSR_TX1END))
        {
            dm9000_device.packet_cnt --;
            if (dm9000_device.packet_cnt > 0)
            {
            	DM9000_TRACE("dm9000 isr: tx second packet\n");

                /* transmit packet II */
                /* Set TX length to DM9000 */
                dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
                dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);

                /* Issue TX polling command */
                dm9000_io_write(DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
            }

            /* One packet sent complete */
            rt_sem_release(&sem_ack);
        }
    }

    /* Re-enable interrupt mask */
    dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);

    DM9000_IO = last_io;
}

/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9000_init(rt_device_t dev)
{
    int i, oft, lnk;
    rt_uint32_t value;

    /* RESET device */
    dm9000_io_write(DM9000_NCR, NCR_RST);
    delay_ms(1000);		/* delay 1ms */

    /* identfy DM9000 */
    value  = dm9000_io_read(DM9000_VIDL);
    value |= dm9000_io_read(DM9000_VIDH) << 8;
    value |= dm9000_io_read(DM9000_PIDL) << 16;
    value |= dm9000_io_read(DM9000_PIDH) << 24;
    if (value == DM9000_ID)
    {
        rt_kprintf("dm9000 id: 0x%x\n", value);
    }
    else
    {
        return -RT_ERROR;
    }

    /* GPIO0 on pre-activate PHY */
    dm9000_io_write(DM9000_GPR, 0x00);	            /* REG_1F bit0 activate phyxcer */
    dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
    dm9000_io_write(DM9000_GPR, 0x00);                 /* Enable PHY */

    /* Set PHY */
    phy_mode_set(dm9000_device.mode);

    /* Program operating register */
    dm9000_io_write(DM9000_NCR, 0x0);	/* only intern phy supported by now */
    dm9000_io_write(DM9000_TCR, 0);	    /* TX Polling clear */
    dm9000_io_write(DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
    dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8));	/* Flow Control : High/Low Water */
    dm9000_io_write(DM9000_FCR, 0x0);	/* SH FIXME: This looks strange! Flow Control */
    dm9000_io_write(DM9000_SMCR, 0);	/* Special Mode */
    dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);	/* clear TX status */
    dm9000_io_write(DM9000_ISR, 0x0f);	/* Clear interrupt status */
    dm9000_io_write(DM9000_TCR2, 0x80);	/* Switch LED to mode 1 */

    /* set mac address */
    for (i = 0, oft = 0x10; i < 6; i++, oft++)
        dm9000_io_write(oft, dm9000_device.dev_addr[i]);
    /* set multicast address */
    for (i = 0, oft = 0x16; i < 8; i++, oft++)
        dm9000_io_write(oft, 0xff);

    /* Activate DM9000 */
    dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);	/* RX enable */
    dm9000_io_write(DM9000_IMR, IMR_PAR);

	if (dm9000_device.mode == DM9000_AUTO)
	{
	    while (!(phy_read(1) & 0x20))
	    {
	        /* autonegation complete bit */
	        rt_thread_delay(10);
	        i++;
	        if (i == 10000)
	        {
	            rt_kprintf("could not establish link\n");
	            return 0;
	        }
	    }
	}

    /* see what we've got */
    lnk = phy_read(17) >> 12;
    rt_kprintf("operating at ");
    switch (lnk)
    {
    case 1:
        rt_kprintf("10M half duplex ");
        break;
    case 2:
        rt_kprintf("10M full duplex ");
        break;
    case 4:
        rt_kprintf("100M half duplex ");
        break;
    case 8:
        rt_kprintf("100M full duplex ");
        break;
    default:
        rt_kprintf("unknown: %d ", lnk);
        break;
    }
    rt_kprintf("mode\n");

    dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);	/* Enable TX/RX interrupt mask */

    return RT_EOK;
}

static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
{
    return RT_EOK;
}

static rt_err_t rt_dm9000_close(rt_device_t dev)
{
    /* RESET devie */
    phy_write(0, 0x8000);	/* PHY RESET */
    dm9000_io_write(DM9000_GPR, 0x01);	/* Power-Down PHY */
    dm9000_io_write(DM9000_IMR, 0x80);	/* Disable all interrupt */
    dm9000_io_write(DM9000_RCR, 0x00);	/* Disable RX */

    return RT_EOK;
}

static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
    rt_set_errno(-RT_ENOSYS);
    return 0;
}

static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
    rt_set_errno(-RT_ENOSYS);
    return 0;
}

static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
    switch (cmd)
    {
    case NIOCTL_GADDR:
        /* get mac address */
        if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
        else return -RT_ERROR;
        break;

    default :
        break;
    }

    return RT_EOK;
}

/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
{
	DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);

    /* lock DM9000 device */
    rt_sem_take(&sem_lock, RT_WAITING_FOREVER);

    /* disable dm9000a interrupt */
    dm9000_io_write(DM9000_IMR, IMR_PAR);

    /* Move data to DM9000 TX RAM */
    DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);

    {
		/* q traverses through linked list of pbuf's
		 * This list MUST consist of a single packet ONLY */
		struct pbuf *q;
		rt_uint16_t pbuf_index = 0;
		rt_uint8_t word[2], word_index = 0;

		q = p;
		/* Write data into dm9000a, two bytes at a time
		 * Handling pbuf's with odd number of bytes correctly
		 * No attempt to optimize for speed has been made */
		while (q)
		{
			if (pbuf_index < q->len)
			{
				word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
				if (word_index == 2)
				{
				    DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
					word_index = 0;
				}
			}
			else
			{
				q = q->next;
				pbuf_index = 0;
			}
		}
		/* One byte could still be unsent */
		if (word_index == 1)
		{
		    DM9000_outw(DM9000_DATA_BASE, word[0]);
		}
    }

    if (dm9000_device.packet_cnt == 0)
    {
    	DM9000_TRACE("dm9000 tx: first packet\n");

        dm9000_device.packet_cnt ++;
        /* Set TX length to DM9000 */
        dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
        dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);

        /* Issue TX polling command */
        dm9000_io_write(DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
    }
    else
    {
    	DM9000_TRACE("dm9000 tx: second packet\n");

        dm9000_device.packet_cnt ++;
        dm9000_device.queue_packet_len = p->tot_len;
    }

    /* enable dm9000a interrupt */
    dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);

    /* unlock DM9000 device */
    rt_sem_release(&sem_lock);

    /* wait ack */
    rt_sem_take(&sem_ack, RT_WAITING_FOREVER);

	DM9000_TRACE("dm9000 tx done\n");

    return RT_EOK;
}

/* reception packet. */
struct pbuf *rt_dm9000_rx(rt_device_t dev)
{
    struct pbuf* p;
    rt_uint32_t rxbyte;

    /* init p pointer */
    p = RT_NULL;

    /* lock DM9000 device */
    rt_sem_take(&sem_lock, RT_WAITING_FOREVER);

    /* Check packet ready or not */
    dm9000_io_read(DM9000_MRCMDX);	    		/* Dummy read */
    rxbyte = DM9000_inb(DM9000_DATA_BASE);		/* Got most updated data */
    if (rxbyte)
    {
        rt_uint16_t rx_status, rx_len;
        rt_uint16_t* data;

        if (rxbyte > 1)
        {
			DM9000_TRACE("dm9000 rx: rx error, stop device\n");

            dm9000_io_write(DM9000_RCR, 0x00);	/* Stop Device */
            dm9000_io_write(DM9000_ISR, 0x80);	/* Stop INT request */
        }

        /* A packet ready now  & Get status/length */
        DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);

        rx_status = DM9000_inw(DM9000_DATA_BASE);
        rx_len = DM9000_inw(DM9000_DATA_BASE);

		DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);

        /* allocate buffer */
        p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
        if (p != RT_NULL)
        {
            struct pbuf* q;
            rt_int32_t len;

            for (q = p; q != RT_NULL; q= q->next)
            {
                data = (rt_uint16_t*)q->payload;
                len = q->len;

                while (len > 0)
                {
                    *data = DM9000_inw(DM9000_DATA_BASE);
                    data ++;
                    len -= 2;
                }
            }
			DM9000_TRACE("\n");
        }
        else
        {
            rt_uint16_t dummy;

			DM9000_TRACE("dm9000 rx: no pbuf\n");

            /* no pbuf, discard data from DM9000 */
            data = &dummy;
            while (rx_len)
            {
                *data = DM9000_inw(DM9000_DATA_BASE);
                rx_len -= 2;
            }
        }

        if ((rx_status & 0xbf00) || (rx_len < 0x40)
                || (rx_len > DM9000_PKT_MAX))
        {
			rt_kprintf("rx error: status %04x\n", rx_status);

            if (rx_status & 0x100)
            {
                rt_kprintf("rx fifo error\n");
            }
            if (rx_status & 0x200)
            {
                rt_kprintf("rx crc error\n");
            }
            if (rx_status & 0x8000)
            {
                rt_kprintf("rx length error\n");
            }
            if (rx_len > DM9000_PKT_MAX)
            {
                rt_kprintf("rx length too big\n");

                /* RESET device */
                dm9000_io_write(DM9000_NCR, NCR_RST);
                rt_thread_delay(1); /* delay 5ms */
            }

            /* it issues an error, release pbuf */
            pbuf_free(p);
            p = RT_NULL;
        }
    }
    else
    {
        /* restore receive interrupt */
	    dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
        dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
    }

    /* unlock DM9000 device */
    rt_sem_release(&sem_lock);

    return p;
}

void rt_hw_dm9000_init()
{
    rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
    rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);

    dm9000_device.type  = TYPE_DM9000A;
	dm9000_device.mode	= DM9000_AUTO;
	dm9000_device.packet_cnt = 0;
	dm9000_device.queue_packet_len = 0;

    /*
     * SRAM Tx/Rx pointer automatically return to start address,
     * Packet Transmitted, Packet Received
     */
    dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;

    dm9000_device.dev_addr[0] = 0x01;
    dm9000_device.dev_addr[1] = 0x60;
    dm9000_device.dev_addr[2] = 0x6E;
    dm9000_device.dev_addr[3] = 0x11;
    dm9000_device.dev_addr[4] = 0x02;
    dm9000_device.dev_addr[5] = 0x0F;

    dm9000_device.parent.parent.init       = rt_dm9000_init;
    dm9000_device.parent.parent.open       = rt_dm9000_open;
    dm9000_device.parent.parent.close      = rt_dm9000_close;
    dm9000_device.parent.parent.read       = rt_dm9000_read;
    dm9000_device.parent.parent.write      = rt_dm9000_write;
    dm9000_device.parent.parent.control    = rt_dm9000_control;
    dm9000_device.parent.parent.private    = RT_NULL;

    dm9000_device.parent.eth_rx     = rt_dm9000_rx;
    dm9000_device.parent.eth_tx     = rt_dm9000_tx;

    eth_device_init(&(dm9000_device.parent), "e0");
}

void dm9000a(void)
{
    rt_kprintf("\n");
    rt_kprintf("NCR   (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
    rt_kprintf("NSR   (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
    rt_kprintf("TCR   (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
    rt_kprintf("TSRI  (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
    rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
    rt_kprintf("RCR   (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
    rt_kprintf("RSR   (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
    rt_kprintf("ORCR  (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
    rt_kprintf("CRR   (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
    rt_kprintf("CSCR  (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
    rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
    rt_kprintf("ISR   (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
    rt_kprintf("IMR   (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
    rt_kprintf("\n");
}

#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump);
#endif