csi_simd.h 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/******************************************************************************
 * @file     csi_simd.h
 * @brief    CSI Single Instruction Multiple Data (SIMD) Header File for GCC.
 * @version  V1.0
 * @date     02. June 2017
 ******************************************************************************/

#ifndef _CSI_SIMD_H_
#define _CSI_SIMD_H_

/**
  \brief   Halfword packing instruction. Combines bits[15:0] of val1 with bits[31:16]
           of val2 levitated with the val3.
  \details Combine a halfword from one register with a halfword from another register.
           The second argument can be left-shifted before extraction of the halfword.
  \param [in]    val1   first 16-bit operands
  \param [in]    val2   second 16-bit operands
  \param [in]    val3   value for left-shifting val2. Value range [0..31].
  \return               the combination of halfwords.
  \remark
                 res[15:0]  = val1[15:0]              \n
                 res[31:16] = val2[31:16] << val3
 */
__ALWAYS_INLINE uint32_t __PKHBT(uint32_t val1, uint32_t val2, uint32_t val3)
{
    return ((((int32_t)(val1) << 0) & (int32_t)0x0000FFFF) | (((int32_t)(val2) << val3) & (int32_t)0xFFFF0000));
}

/**
  \brief   Halfword packing instruction. Combines bits[31:16] of val1 with bits[15:0]
           of val2 right-shifted with the val3.
  \details Combine a halfword from one register with a halfword from another register.
           The second argument can be right-shifted before extraction of the halfword.
  \param [in]    val1   first 16-bit operands
  \param [in]    val2   second 16-bit operands
  \param [in]    val3   value for right-shifting val2. Value range [1..32].
  \return               the combination of halfwords.
  \remark
                 res[15:0]  = val2[15:0] >> val3        \n
                 res[31:16] = val1[31:16]
 */
__ALWAYS_INLINE uint32_t __PKHTB(uint32_t val1, uint32_t val2, uint32_t val3)
{
    return ((((int32_t)(val1) << 0) & (int32_t)0xFFFF0000) | (((int32_t)(val2) >> val3) & (int32_t)0x0000FFFF));
}

/**
  \brief   Dual 16-bit signed saturate.
  \details This function saturates a signed value.
  \param [in]    x   two signed 16-bit values to be saturated.
  \param [in]    y   bit position for saturation, an integral constant expression in the range 1 to 16.
  \return        the sum of the absolute differences of the following bytes, added to the accumulation value:\n
                 the signed saturation of the low halfword in val1, saturated to the bit position specified in
                 val2 and returned in the low halfword of the return value.\n
                 the signed saturation of the high halfword in val1, saturated to the bit position specified in
                 val2 and returned in the high halfword of the return value.
 */
__ALWAYS_INLINE uint32_t __SSAT16(int32_t x, const uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __SSAT((((int32_t)x << 16) >> 16), y) & (int32_t)0x0000FFFF;
    s = __SSAT((((int32_t)x) >> 16), y) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturate.
  \details This function enables you to saturate two signed 16-bit values to a selected unsigned range.
  \param [in]    x   two signed 16-bit values to be saturated.
  \param [in]    y   bit position for saturation, an integral constant expression in the range 1 to 16.
  \return        the saturation of the two signed 16-bit values, as non-negative values:
                 the saturation of the low halfword in val1, saturated to the bit position specified in
                 val2 and returned in the low halfword of the return value.\n
                 the saturation of the high halfword in val1, saturated to the bit position specified in
                 val2 and returned in the high halfword of the return value.
 */
__ALWAYS_INLINE uint32_t __USAT16(uint32_t x, const uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __IUSAT(((x << 16) >> 16), y) & 0x0000FFFF;
    s = __IUSAT(((x) >> 16), y) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit saturating addition.
  \details This function enables you to perform four 8-bit integer additions,
           saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the saturated addition of the first byte of each operand in the first byte of the return value.\n
                 the saturated addition of the second byte of each operand in the second byte of the return value.\n
                 the saturated addition of the third byte of each operand in the third byte of the return value.\n
                 the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_INLINE uint32_t __QADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __SSAT(((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
    s = __SSAT(((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
    t = __SSAT(((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
    u = __SSAT(((((int32_t)x) >> 24) + (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned saturating addition.
  \details This function enables you to perform four unsigned 8-bit integer additions,
           saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the saturated addition of the first byte of each operand in the first byte of the return value.\n
                 the saturated addition of the second byte of each operand in the second byte of the return value.\n
                 the saturated addition of the third byte of each operand in the third byte of the return value.\n
                 the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range 0 <= x <= 2^8 - 1.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_INLINE uint32_t __UQADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __IUSAT((((x << 24) >> 24) + ((y << 24) >> 24)), 8) & 0x000000FF;
    s = __IUSAT((((x << 16) >> 24) + ((y << 16) >> 24)), 8) & 0x000000FF;
    t = __IUSAT((((x <<  8) >> 24) + ((y <<  8) >> 24)), 8) & 0x000000FF;
    u = __IUSAT((((x) >> 24) + ((y) >> 24)), 8) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit signed addition.
  \details This function performs four 8-bit signed integer additions.
  \param [in]    x  first four 8-bit summands.
  \param [in]    y  second four 8-bit summands.
  \return        the addition of the first bytes from each operand, in the first byte of the return value.\n
                 the addition of the second bytes of each operand, in the second byte of the return value.\n
                 the addition of the third bytes of each operand, in the third byte of the return value.\n
                 the addition of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_INLINE uint32_t __SADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
    s = ((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
    t = ((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)) & (int32_t)0x000000FF;
    u = ((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned addition.
  \details This function performs four unsigned 8-bit integer additions.
  \param [in]    x  first four 8-bit summands.
  \param [in]    y  second four 8-bit summands.
  \return        the addition of the first bytes from each operand, in the first byte of the return value.\n
                 the addition of the second bytes of each operand, in the second byte of the return value.\n
                 the addition of the third bytes of each operand, in the third byte of the return value.\n
                 the addition of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_INLINE uint32_t __UADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) + ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) + ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) + ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) + ((y) >> 24)) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit saturating subtract.
  \details This function enables you to perform four 8-bit integer subtractions,
           saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the subtraction of the first byte of each operand in the first byte of the return value.\n
                 the subtraction of the second byte of each operand in the second byte of the return value.\n
                 the subtraction of the third byte of each operand in the third byte of the return value.\n
                 the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_INLINE uint32_t __QSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __SSAT(((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
    s = __SSAT(((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
    t = __SSAT(((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
    u = __SSAT(((((int32_t)x) >> 24) - (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned saturating subtraction.
  \details This function enables you to perform four unsigned 8-bit integer subtractions,
           saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the subtraction of the first byte of each operand in the first byte of the return value.\n
                 the subtraction of the second byte of each operand in the second byte of the return value.\n
                 the subtraction of the third byte of each operand in the third byte of the return value.\n
                 the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit unsigned integer range 0 <= x <= 2^8 - 1.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_INLINE uint32_t __UQSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __IUSAT((((x << 24) >> 24) - ((y << 24) >> 24)), 8) & 0x000000FF;
    s = __IUSAT((((x << 16) >> 24) - ((y << 16) >> 24)), 8) & 0x000000FF;
    t = __IUSAT((((x <<  8) >> 24) - ((y <<  8) >> 24)), 8) & 0x000000FF;
    u = __IUSAT((((x) >> 24) - ((y) >> 24)), 8) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit signed subtraction.
  \details This function enables you to perform four 8-bit signed integer subtractions.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_INLINE uint32_t __SSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
    s = ((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
    t = ((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)) & (int32_t)0x000000FF;
    u = ((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned subtract.
  \details This function enables you to perform four 8-bit unsigned integer subtractions.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_INLINE uint32_t __USUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) - ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Unsigned sum of quad 8-bit unsigned absolute difference.
  \details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
           of the differences together, returning the result as a single unsigned integer.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.\n
                 The sum is returned as a single unsigned integer.
  \remark
                 absdiff1   = val1[7:0]   - val2[7:0]        \n
                 absdiff2   = val1[15:8]  - val2[15:8]       \n
                 absdiff3   = val1[23:16] - val2[23:16]      \n
                 absdiff4   = val1[31:24] - val2[31:24]      \n
                 res[31:0]  = absdiff1 + absdiff2 + absdiff3 + absdiff4
 */
__ALWAYS_INLINE uint32_t __USAD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) - ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;

    return (u + t + s + r);
}

/**
  \brief   Unsigned sum of quad 8-bit unsigned absolute difference with 32-bit accumulate.
  \details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
           of the differences to a 32-bit accumulate operand.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \param [in]  sum  accumulation value.
  \return        the sum of the absolute differences of the following bytes, added to the accumulation value:
                 the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 absdiff1 = val1[7:0]   - val2[7:0]        \n
                 absdiff2 = val1[15:8]  - val2[15:8]       \n
                 absdiff3 = val1[23:16] - val2[23:16]      \n
                 absdiff4 = val1[31:24] - val2[31:24]      \n
                 sum = absdiff1 + absdiff2 + absdiff3 + absdiff4 \n
                 res[31:0] = sum[31:0] + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __USADA8(uint32_t x, uint32_t y, uint32_t sum)
{
    int32_t r, s, t, u;

    r = (abs(((x << 24) >> 24) - ((y << 24) >> 24))) & 0x000000FF;
    s = (abs(((x << 16) >> 24) - ((y << 16) >> 24))) & 0x000000FF;
    t = (abs(((x <<  8) >> 24) - ((y <<  8) >> 24))) & 0x000000FF;
    u = (abs(((x) >> 24) - ((y) >> 24))) & 0x000000FF;

    return (u + t + s + r + sum);
}

/**
  \brief   Dual 16-bit saturating addition.
  \details This function enables you to perform two 16-bit integer arithmetic additions in parallel,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated addition of the low halfwords, in the low halfword of the return value.\n
                 the saturated addition of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_INLINE uint32_t __QADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating addition.
  \details This function enables you to perform two unsigned 16-bit integer additions, saturating
           the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated addition of the low halfwords, in the low halfword of the return value.\n
                 the saturated addition of the high halfwords, in the high halfword of the return value.\n
                 The results are saturated to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_INLINE uint32_t __UQADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __IUSAT((((x << 16) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed addition.
  \details This function enables you to perform two 16-bit signed integer additions.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the addition of the low halfwords in the low halfword of the return value.\n
                 the addition of the high halfwords in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_INLINE uint32_t __SADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = ((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition
  \details This function enables you to perform two 16-bit unsigned integer additions.
  \param [in]    x   first two 16-bit summands for each addition.
  \param [in]    y   second two 16-bit summands for each addition.
  \return        the addition of the low halfwords in the low halfword of the return value.\n
                 the addition of the high halfwords in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_INLINE uint32_t __UADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = (((x << 16) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) + ((y) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}


/**
  \brief   Dual 16-bit signed addition with halved results.
  \details This function enables you to perform two signed 16-bit integer additions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved addition of the low halfwords, in the low halfword of the return value.\n
                 the halved addition of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[31:16]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHADD16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition with halved results.
  \details This function enables you to perform two unsigned 16-bit integer additions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved addition of the low halfwords, in the low halfword of the return value.\n
                 the halved addition of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[31:16]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHADD16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit signed addition with halved results.
  \details This function enables you to perform four signed 8-bit integer additions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved addition of the first bytes from each operand, in the first byte of the return value.\n
                 the halved addition of the second bytes from each operand, in the second byte of the return value.\n
                 the halved addition of the third bytes from each operand, in the third byte of the return value.\n
                 the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   + val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  + val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] + val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] + val2[31:24]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
    s = (((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
    t = (((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)) >> 1) & (int32_t)0x000000FF;
    u = (((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned addition with halved results.
  \details This function enables you to perform four unsigned 8-bit integer additions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved addition of the first bytes from each operand, in the first byte of the return value.\n
                 the halved addition of the second bytes from each operand, in the second byte of the return value.\n
                 the halved addition of the third bytes from each operand, in the third byte of the return value.\n
                 the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   + val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  + val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] + val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] + val2[31:24]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((x << 24) >> 24) + ((y << 24) >> 24)) >> 1) & 0x000000FF;
    s = ((((x << 16) >> 24) + ((y << 16) >> 24)) >> 1) & 0x000000FF;
    t = ((((x <<  8) >> 24) + ((y <<  8) >> 24)) >> 1) & 0x000000FF;
    u = ((((x) >> 24) + ((y) >> 24)) >> 1) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Dual 16-bit saturating subtract.
  \details This function enables you to perform two 16-bit integer subtractions in parallel,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
                 the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_INLINE uint32_t __QSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating subtraction.
  \details This function enables you to perform two unsigned 16-bit integer subtractions,
           saturating the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \param [in]    x   first two 16-bit operands for each subtraction.
  \param [in]    y   second two 16-bit operands for each subtraction.
  \return        the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
                 the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_INLINE uint32_t __UQSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction.
  \details This function enables you to perform two 16-bit signed integer subtractions.
  \param [in]    x   first two 16-bit operands of each subtraction.
  \param [in]    y   second two 16-bit operands of each subtraction.
  \return        the subtraction of the low halfword in the second operand from the low
                 halfword in the first operand, in the low halfword of the return value. \n
                 the subtraction of the high halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_INLINE uint32_t __SSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtract.
  \details This function enables you to perform two 16-bit unsigned integer subtractions.
  \param [in]    x   first two 16-bit operands of each subtraction.
  \param [in]    y   second two 16-bit operands of each subtraction.
  \return        the subtraction of the low halfword in the second operand from the low
                 halfword in the first operand, in the low halfword of the return value. \n
                 the subtraction of the high halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_INLINE uint32_t __USUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) - ((y) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction with halved results.
  \details This function enables you to perform two signed 16-bit integer subtractions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved subtraction of the low halfwords, in the low halfword of the return value.\n
                 the halved subtraction of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[31:16]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtraction with halved results.
  \details This function enables you to perform two unsigned 16-bit integer subtractions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved subtraction of the low halfwords, in the low halfword of the return value.\n
                 the halved subtraction of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[31:16]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit signed addition with halved results.
  \details This function enables you to perform four signed 8-bit integer subtractions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
                 the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
                 the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   - val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  - val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] - val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] - val2[31:24]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
    s = (((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
    t = (((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)) >> 1) & (int32_t)0x000000FF;
    u = (((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned subtraction with halved results.
  \details This function enables you to perform four unsigned 8-bit integer subtractions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
                 the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
                 the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   - val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  - val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] - val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] - val2[31:24]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((x << 24) >> 24) - ((y << 24) >> 24)) >> 1) & 0x000000FF;
    s = ((((x << 16) >> 24) - ((y << 16) >> 24)) >> 1) & 0x000000FF;
    t = ((((x <<  8) >> 24) - ((y <<  8) >> 24)) >> 1) & 0x000000FF;
    u = ((((x) >> 24) - ((y) >> 24)) >> 1) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Dual 16-bit add and subtract with exchange.
  \details This function enables you to exchange the halfwords of the one operand,
           then add the high halfwords and subtract the low halfwords,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the saturated subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the saturated addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_INLINE uint32_t __QASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating addition and subtraction with exchange.
  \details This function enables you to exchange the halfwords of the second operand and
           perform one unsigned 16-bit integer addition and one unsigned 16-bit subtraction,
           saturating the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the saturated subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the saturated addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_INLINE uint32_t __UQASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit addition and subtraction with exchange.
  \details It enables you to exchange the halfwords of the second operand, add the high halfwords
           and subtract the low halfwords.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_INLINE uint32_t __SASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition and subtraction with exchange.
  \details This function enables you to exchange the two halfwords of the second operand,
           add the high halfwords and subtract the low halfwords.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_INLINE uint32_t __UASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) - ((y) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed addition and subtraction with halved results.
  \details This function enables you to exchange the two halfwords of one operand, perform one
           signed 16-bit integer addition and one signed 16-bit subtraction, and halve the results.
  \param [in]    x   first 16-bit operands.
  \param [in]    y   second 16-bit operands.
  \return        the halved subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the halved addition of the low halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[15:0]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition and subtraction with halved results and exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           add the high halfwords and subtract the low halfwords, halving the results.
  \param [in]    x   first operand for the subtraction in the low halfword, and
                     the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword, and
                     the second operand for the addition in the low halfword.
  \return        the halved subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the halved addition of the low halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[15:0]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit subtract and add with exchange.
  \details This function enables you to exchange the halfwords of one operand,
           then subtract the high halfwords and add the low halfwords,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the saturated addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the saturated subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_INLINE uint32_t __QSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating subtraction and addition with exchange.
  \details This function enables you to exchange the halfwords of the second operand and perform
           one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturating
           the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the saturated addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the saturated subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_INLINE uint32_t __UQSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit unsigned subtract and add with exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           subtract the high halfwords and add the low halfwords.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_INLINE uint32_t __USAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) + ((y) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction and addition with exchange.
  \details This function enables you to exchange the two halfwords of one operand and perform one
           16-bit integer subtraction and one 16-bit addition.
  \param [in]    x   first operand for the addition in the low halfword, and the first operand
                     for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword, and the second
                     operand for the subtraction in the low halfword.
  \return        the addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_INLINE uint32_t __SSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}


/**
  \brief   Dual 16-bit signed subtraction and addition with halved results.
  \details This function enables you to exchange the two halfwords of one operand, perform one signed
           16-bit integer subtraction and one signed 16-bit addition, and halve the results.
  \param [in]    x   first 16-bit operands.
  \param [in]    y   second 16-bit operands.
  \return        the halved addition of the low halfword in the first operand and the
                 high halfword in the second operand, in the low halfword of the return value.\n
                 the halved subtraction of the low halfword in the second operand from the
                 high halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[15:0]) >> 1
 */
__ALWAYS_INLINE uint32_t __SHSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtraction and addition with halved results and exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           subtract the high halfwords and add the low halfwords, halving the results.
  \param [in]    x   first operand for the addition in the low halfword, and
                     the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword, and
                     the second operand for the subtraction in the low halfword.
  \return        the halved addition of the low halfword in the first operand and the
                 high halfword in the second operand, in the low halfword of the return value.\n
                 the halved subtraction of the low halfword in the second operand from the
                 high halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[15:0]) >> 1
 */
__ALWAYS_INLINE uint32_t __UHSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed multiply with exchange returning difference.
  \details This function enables you to perform two 16-bit signed multiplications, subtracting
           one of the products from the other. The halfwords of the second operand are exchanged
           before performing the arithmetic. This produces top * bottom and bottom * top multiplication.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the difference of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[31:16]       \n
                 p2 = val1[31:16] * val2[15:0]        \n
                 res[31:0] = p1 - p2
 */
__ALWAYS_INLINE uint32_t __SMUSDX(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}

/**
  \brief   Sum of dual 16-bit signed multiply with exchange.
  \details This function enables you to perform two 16-bit signed multiplications with exchanged
           halfwords of the second operand, adding the products together.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the sum of the products of the two 16-bit signed multiplications with exchanged halfwords of the second operand.
  \remark
                 p1 = val1[15:0]  * val2[31:16]       \n
                 p2 = val1[31:16] * val2[15:0]        \n
                 res[31:0] = p1 + p2
 */
__ALWAYS_INLINE uint32_t __SMUADX(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}


/**
  \brief   Saturating add.
  \details This function enables you to obtain the saturating add of two integers.
  \param [in]    x   first summand of the saturating add operation.
  \param [in]    y   second summand of the saturating add operation.
  \return        the saturating addition of val1 and val2.
  \remark
                 res[31:0] = SAT(val1 + SAT(val2))
 */
__ALWAYS_INLINE int32_t __QADD(int32_t x, int32_t y)
{
    int32_t result;

    if (y >= 0)
    {
        if (x + y >= x)
        {
            result = x + y;
        }
        else
        {
            result = 0x7FFFFFFF;
        }
    }
    else
    {
        if (x + y < x)
        {
            result = x + y;
        }
        else
        {
            result = 0x80000000;
        }
    }

    return result;
}

/**
  \brief   Saturating subtract.
  \details This function enables you to obtain the saturating add of two integers.
  \param [in]    x   first summand of the saturating add operation.
  \param [in]    y   second summand of the saturating add operation.
  \return        the saturating addition of val1 and val2.
  \remark
                 res[31:0] = SAT(val1 + SAT(val2))
 */
__ALWAYS_INLINE int32_t __QSUB(int32_t x, int32_t y)
{
    int64_t tmp;
    int32_t result;

    tmp = (int64_t)x - (int64_t)y;

    if (tmp > 0x7fffffff)
    {
        tmp = 0x7fffffff;
    }
    else if (tmp < (-2147483647 - 1))
    {
        tmp = -2147483647 - 1;
    }

    result = tmp;
    return result;
}

/**
  \brief   Dual 16-bit signed multiply with single 32-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications,
           adding both results to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value, as a 32-bit integer.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 + p2 + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __SMLAD(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Pre-exchanged dual 16-bit signed multiply with single 32-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications with exchanged
           halfwords of the second operand, adding both results to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication with exchanged halfwords of the second
                 operand added to the accumulate value, as a 32-bit integer.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 res[31:0] = p1 + p2 + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __SMLADX(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
  \details This function enables you to perform two 16-bit signed multiplications, take the
           difference of the products, subtracting the high halfword product from the low
           halfword product, and add the difference to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]       \n
                 p2 = val1[31:16] * val2[31:16]      \n
                 res[31:0] = p1 - p2 + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __SMLSD(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
  \details This function enables you to exchange the halfwords in the second operand, then perform two 16-bit
           signed multiplications. The difference of the products is added to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 res[31:0] = p1 - p2 + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __SMLSDX(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with single 64-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications, adding both results
           to a 64-bit accumulate operand. Overflow is only possible as a result of the 64-bit addition.
           This overflow is not detected if it occurs. Instead, the result wraps around modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 sum = p1 + p2 + val3[63:32][31:0]  \n
                 res[63:32] = sum[63:32]            \n
                 res[31:0]  = sum[31:0]
 */
__ALWAYS_INLINE uint64_t __SMLALD(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange with single 64-bit accumulator.
  \details This function enables you to exchange the halfwords of the second operand, and perform two
           signed 16-bit multiplications, adding both results to a 64-bit accumulate operand. Overflow
           is only possible as a result of the 64-bit addition. This overflow is not detected if it occurs.
           Instead, the result wraps around modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 sum = p1 + p2 + val3[63:32][31:0]  \n
                 res[63:32] = sum[63:32]            \n
                 res[31:0]  = sum[31:0]
 */
__ALWAYS_INLINE uint64_t __SMLALDX(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   dual 16-bit signed multiply subtract with 64-bit accumulate.
  \details This function It enables you to perform two 16-bit signed multiplications, take the difference
           of the products, subtracting the high halfword product from the low halfword product, and add the
           difference to a 64-bit accumulate operand. Overflow cannot occur during the multiplications or the
           subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow is not
           detected. Instead, the result wraps round to modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[63:0] = p1 - p2 + val3[63:0]
 */
__ALWAYS_INLINE uint64_t __SMLSLD(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 64-bit accumulate.
  \details This function enables you to exchange the halfwords of the second operand, perform two 16-bit multiplications,
           adding the difference of the products to a 64-bit accumulate operand. Overflow cannot occur during the
           multiplications or the subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow
           is not detected. Instead, the result wraps round to modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]      \n
                 p2 = val1[31:16] * val2[15:0]       \n
                 res[63:0] = p1 - p2 + val3[63:0]
 */
__ALWAYS_INLINE uint64_t __SMLSLDX(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   32-bit signed multiply with 32-bit truncated accumulator.
  \details This function enables you to perform a signed 32-bit multiplications, adding the most
           significant 32 bits of the 64-bit result to a 32-bit accumulate operand.
  \param [in]    x   first operand for multiplication.
  \param [in]    y   second operand for multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of multiplication (most significant 32 bits) is added to the accumulate value, as a 32-bit integer.
  \remark
                 p = val1 * val2      \n
                 res[31:0] = p[61:32] + val3[31:0]
 */
__ALWAYS_INLINE uint32_t __SMMLA(int32_t x, int32_t y, int32_t sum)
{
    return (uint32_t)((int32_t)((int64_t)((int64_t)x * (int64_t)y) >> 32) + sum);
}

/**
  \brief   Sum of dual 16-bit signed multiply.
  \details This function enables you to perform two 16-bit signed multiplications, adding the products together.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the sum of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 + p2
 */
__ALWAYS_INLINE uint32_t __SMUAD(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}

/**
  \brief   Dual 16-bit signed multiply returning difference.
  \details This function enables you to perform two 16-bit signed multiplications, taking the difference
           of the products by subtracting the high halfword product from the low halfword product.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the difference of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 - p2
 */
__ALWAYS_INLINE uint32_t __SMUSD(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}

/**
  \brief   Dual extracted 8-bit to 16-bit signed addition.
  \details This function enables you to extract two 8-bit values from the second operand (at bit positions
           [7:0] and [23:16]), sign-extend them to 16-bits each, and add the results to the first operand.
  \param [in]    x   values added to the sign-extended to 16-bit values.
  \param [in]    y   two 8-bit values to be extracted and sign-extended.
  \return        the addition of val1 and val2, where the 8-bit values in val2[7:0] and
                 val2[23:16] have been extracted and sign-extended prior to the addition.
  \remark
                 res[15:0]  = val1[15:0] + SignExtended(val2[7:0])      \n
                 res[31:16] = val1[31:16] + SignExtended(val2[23:16])
 */
__ALWAYS_INLINE uint32_t __SXTAB16(uint32_t x, uint32_t y)
{
    return ((uint32_t)((((((int32_t)y << 24) >> 24) + (((int32_t)x << 16) >> 16)) & (int32_t)0x0000FFFF) |
                       (((((int32_t)y <<  8) >>  8)  + (((int32_t)x >> 16) << 16)) & (int32_t)0xFFFF0000)));
}

/**
  \brief   Extracted 16-bit to 32-bit unsigned addition.
  \details This function enables you to extract two 8-bit values from one operand, zero-extend
           them to 16 bits each, and add the results to two 16-bit values from another operand.
  \param [in]    x   values added to the zero-extended to 16-bit values.
  \param [in]    y   two 8-bit values to be extracted and zero-extended.
  \return        the addition of val1 and val2, where the 8-bit values in val2[7:0] and
                 val2[23:16] have been extracted and zero-extended prior to the addition.
  \remark
                 res[15:0]  = ZeroExt(val2[7:0]   to 16 bits) + val1[15:0]      \n
                 res[31:16] = ZeroExt(val2[31:16] to 16 bits) + val1[31:16]
 */
__ALWAYS_INLINE uint32_t __UXTAB16(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((y << 24) >> 24) + ((x << 16) >> 16)) & 0x0000FFFF) |
                       ((((y <<  8) >>  8) + ((x >> 16) << 16)) & 0xFFFF0000)));
}

/**
  \brief   Dual extract 8-bits and sign extend each to 16-bits.
  \details This function enables you to extract two 8-bit values from an operand and sign-extend them to 16 bits each.
  \param [in]    x   two 8-bit values in val[7:0] and val[23:16] to be sign-extended.
  \return        the 8-bit values sign-extended to 16-bit values.\n
                 sign-extended value of val[7:0] in the low halfword of the return value.\n
                 sign-extended value of val[23:16] in the high halfword of the return value.
  \remark
                 res[15:0]  = SignExtended(val[7:0])       \n
                 res[31:16] = SignExtended(val[23:16])
 */
__ALWAYS_INLINE uint32_t __SXTB16(uint32_t x)
{
    return ((uint32_t)(((((int32_t)x << 24) >> 24) & (int32_t)0x0000FFFF) |
                       ((((int32_t)x <<  8) >>  8) & (int32_t)0xFFFF0000)));
}

/**
  \brief   Dual extract 8-bits and zero-extend to 16-bits.
  \details This function enables you to extract two 8-bit values from an operand and zero-extend them to 16 bits each.
  \param [in]    x   two 8-bit values in val[7:0] and val[23:16] to be zero-extended.
  \return        the 8-bit values sign-extended to 16-bit values.\n
                 sign-extended value of val[7:0] in the low halfword of the return value.\n
                 sign-extended value of val[23:16] in the high halfword of the return value.
  \remark
                 res[15:0]  = SignExtended(val[7:0])       \n
                 res[31:16] = SignExtended(val[23:16])
 */
__ALWAYS_INLINE uint32_t __UXTB16(uint32_t x)
{
    return ((uint32_t)((((x << 24) >> 24) & 0x0000FFFF) |
                       (((x <<  8) >>  8) & 0xFFFF0000)));
}

#endif /* _CSI_SIMD_H_ */