fsl_lpspi.c 68.6 KB
Newer Older
B
Bernard Xiong 已提交
1 2 3 4 5
/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 * All rights reserved.
 *
misonyo's avatar
misonyo 已提交
6
 * SPDX-License-Identifier: BSD-3-Clause
B
Bernard Xiong 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 */

#include "fsl_lpspi.h"

/*******************************************************************************
* Definitions
******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpspi"
#endif

/*!
 * @brief Default watermark values.
 *
 * The default watermarks are set to zero.
 */
enum _lpspi_default_watermarks
{
    kLpspiDefaultTxWatermark = 0,
    kLpspiDefaultRxWatermark = 0,
};

/*! @brief Typedef for master interrupt handler. */
typedef void (*lpspi_master_isr_t)(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpspi_slave_isr_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*******************************************************************************
* Prototypes
******************************************************************************/

misonyo's avatar
misonyo 已提交
41 42 43 44 45 46 47 48
/*!
* @brief Get instance number for LPSPI module.
*
* @param base LPSPI peripheral base address.
* @return Return the value of LPSPI instance.
*/
uint32_t LPSPI_GetInstance(LPSPI_Type *base);

B
Bernard Xiong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*!
* @brief Configures the LPSPI peripheral chip select polarity.
*
* This function  takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
* configures the Pcs signal to operate with the desired characteristic.
*
* @param base LPSPI peripheral address.
* @param pcs The particular peripheral chip select (parameter value is of type lpspi_which_pcs_t) for which we wish to
*            apply the active high or active low characteristic.
* @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of
*                        type lpspi_pcs_polarity_config_t.
*/
static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh);

/*!
* @brief Combine the write data for 1 byte to 4 bytes.
* This is not a public API.
*/
static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint32_t bytesEachWrite, bool isByteSwap);

/*!
* @brief Separate the read data for 1 byte to 4 bytes.
* This is not a public API.
*/
static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint32_t bytesEachRead, bool isByteSwap);

/*!
* @brief Master fill up the TX FIFO with data.
* This is not a public API.
*/
static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
* @brief Master finish up a transfer.
* It would call back if there is callback function and set the state to idle.
* This is not a public API.
*/
static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
* @brief Slave fill up the TX FIFO with data.
* This is not a public API.
*/
static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
* @brief Slave finish up a transfer.
* It would call back if there is callback function and set the state to idle.
* This is not a public API.
*/
static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
* @brief LPSPI common interrupt handler.
*
* @param handle pointer to s_lpspiHandle which stores the transfer state.
*/
static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param);

/*******************************************************************************
* Variables
******************************************************************************/

/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint8_t s_baudratePrescaler[] = {1, 2, 4, 8, 16, 32, 64, 128};

/*! @brief Pointers to lpspi bases for each instance. */
static LPSPI_Type *const s_lpspiBases[] = LPSPI_BASE_PTRS;

/*! @brief Pointers to lpspi IRQ number for each instance. */
static const IRQn_Type s_lpspiIRQ[] = LPSPI_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to lpspi clocks for each instance. */
static const clock_ip_name_t s_lpspiClocks[] = LPSPI_CLOCKS;

#if defined(LPSPI_PERIPH_CLOCKS)
static const clock_ip_name_t s_LpspiPeriphClocks[] = LPSPI_PERIPH_CLOCKS;
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to lpspi handles for each instance. */
static void *s_lpspiHandle[ARRAY_SIZE(s_lpspiBases)] = {NULL};

/*! @brief Pointer to master IRQ handler for each instance. */
static lpspi_master_isr_t s_lpspiMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */
static lpspi_slave_isr_t s_lpspiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t g_lpspiDummyData[ARRAY_SIZE(s_lpspiBases)] = {0};
/**********************************************************************************************************************
* Code
*********************************************************************************************************************/
uint32_t LPSPI_GetInstance(LPSPI_Type *base)
{
    uint8_t instance = 0;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_lpspiBases); instance++)
    {
        if (s_lpspiBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_lpspiBases));

    return instance;
}

misonyo's avatar
misonyo 已提交
163 164 165 166 167 168 169 170 171 172
/*!
 * brief Set up the dummy data.
 *
 * param base LPSPI peripheral address.
 * param dummyData Data to be transferred when tx buffer is NULL.
 * Note:
 *      This API has no effect when LPSPI in slave interrupt mode, because driver
 *      will set the TXMSK bit to 1 if txData is NULL, no data is loaded from transmit
 *      FIFO and output pin is tristated.
 */
B
Bernard Xiong 已提交
173 174 175 176 177 178
void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
{
    uint32_t instance = LPSPI_GetInstance(base);
    g_lpspiDummyData[instance] = dummyData;
}

misonyo's avatar
misonyo 已提交
179 180 181 182 183 184 185
/*!
 * brief Initializes the LPSPI master.
 *
 * param base LPSPI peripheral address.
 * param masterConfig Pointer to structure lpspi_master_config_t.
 * param srcClock_Hz Module source input clock in Hertz
 */
B
Bernard Xiong 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
    assert(masterConfig);

    uint32_t tcrPrescaleValue = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Set LPSPI to master */
    LPSPI_SetMasterSlaveMode(base, kLPSPI_Master);

    /* Set specific PCS to active high or low */
    LPSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);

    /* Set Configuration Register 1 related setting.*/
    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK | LPSPI_CFGR1_NOSTALL_MASK)) |
                  LPSPI_CFGR1_OUTCFG(masterConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(masterConfig->pinCfg) |
                  LPSPI_CFGR1_NOSTALL(0);

    /* Set baudrate and delay times*/
    LPSPI_MasterSetBaudRate(base, masterConfig->baudRate, srcClock_Hz, &tcrPrescaleValue);

    /* Set default watermarks */
    LPSPI_SetFifoWatermarks(base, kLpspiDefaultTxWatermark, kLpspiDefaultRxWatermark);

    /* Set Transmit Command Register*/
    base->TCR = LPSPI_TCR_CPOL(masterConfig->cpol) | LPSPI_TCR_CPHA(masterConfig->cpha) |
                LPSPI_TCR_LSBF(masterConfig->direction) | LPSPI_TCR_FRAMESZ(masterConfig->bitsPerFrame - 1) |
                LPSPI_TCR_PRESCALE(tcrPrescaleValue) | LPSPI_TCR_PCS(masterConfig->whichPcs);

    LPSPI_Enable(base, true);

    LPSPI_MasterSetDelayTimes(base, masterConfig->pcsToSckDelayInNanoSec, kLPSPI_PcsToSck, srcClock_Hz);
    LPSPI_MasterSetDelayTimes(base, masterConfig->lastSckToPcsDelayInNanoSec, kLPSPI_LastSckToPcs, srcClock_Hz);
    LPSPI_MasterSetDelayTimes(base, masterConfig->betweenTransferDelayInNanoSec, kLPSPI_BetweenTransfer, srcClock_Hz);

    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);
}

misonyo's avatar
misonyo 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247
/*!
 * brief Sets the lpspi_master_config_t structure to default values.
 *
 * This API initializes the configuration structure  for LPSPI_MasterInit().
 * The initialized structure can remain unchanged in LPSPI_MasterInit(), or can be modified
 * before calling the LPSPI_MasterInit().
 * Example:
 * code
 *  lpspi_master_config_t  masterConfig;
 *  LPSPI_MasterGetDefaultConfig(&masterConfig);
 * endcode
 * param masterConfig pointer to lpspi_master_config_t structure
 */
B
Bernard Xiong 已提交
248 249 250 251
void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
{
    assert(masterConfig);

misonyo's avatar
misonyo 已提交
252 253 254
    /* Initializes the configure structure to zero. */
    memset(masterConfig, 0, sizeof(*masterConfig));

B
Bernard Xiong 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    masterConfig->baudRate = 500000;
    masterConfig->bitsPerFrame = 8;
    masterConfig->cpol = kLPSPI_ClockPolarityActiveHigh;
    masterConfig->cpha = kLPSPI_ClockPhaseFirstEdge;
    masterConfig->direction = kLPSPI_MsbFirst;

    masterConfig->pcsToSckDelayInNanoSec = 1000000000 / masterConfig->baudRate * 2;
    masterConfig->lastSckToPcsDelayInNanoSec = 1000000000 / masterConfig->baudRate * 2;
    masterConfig->betweenTransferDelayInNanoSec = 1000000000 / masterConfig->baudRate * 2;

    masterConfig->whichPcs = kLPSPI_Pcs0;
    masterConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow;

    masterConfig->pinCfg = kLPSPI_SdiInSdoOut;
    masterConfig->dataOutConfig = kLpspiDataOutRetained;
}

misonyo's avatar
misonyo 已提交
272 273 274 275 276 277
/*!
 * brief LPSPI slave configuration.
 *
 * param base LPSPI peripheral address.
 * param slaveConfig Pointer to a structure lpspi_slave_config_t.
 */
B
Bernard Xiong 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    LPSPI_SetMasterSlaveMode(base, kLPSPI_Slave);

    LPSPI_SetOnePcsPolarity(base, slaveConfig->whichPcs, slaveConfig->pcsActiveHighOrLow);

    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK)) |
                  LPSPI_CFGR1_OUTCFG(slaveConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(slaveConfig->pinCfg);

    LPSPI_SetFifoWatermarks(base, kLpspiDefaultTxWatermark, kLpspiDefaultRxWatermark);

    base->TCR = LPSPI_TCR_CPOL(slaveConfig->cpol) | LPSPI_TCR_CPHA(slaveConfig->cpha) |
                LPSPI_TCR_LSBF(slaveConfig->direction) | LPSPI_TCR_FRAMESZ(slaveConfig->bitsPerFrame - 1);

    /* This operation will set the dummy data for edma transfer, no effect in interrupt way. */
    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);

    LPSPI_Enable(base, true);
}

misonyo's avatar
misonyo 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
/*!
 * brief Sets the lpspi_slave_config_t structure to default values.
 *
 * This API initializes the configuration structure for LPSPI_SlaveInit().
 * The initialized structure can remain unchanged in LPSPI_SlaveInit() or can be modified
 * before calling the LPSPI_SlaveInit().
 * Example:
 * code
 *  lpspi_slave_config_t  slaveConfig;
 *  LPSPI_SlaveGetDefaultConfig(&slaveConfig);
 * endcode
 * param slaveConfig pointer to lpspi_slave_config_t structure.
 */
B
Bernard Xiong 已提交
325 326 327 328
void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

misonyo's avatar
misonyo 已提交
329 330 331
    /* Initializes the configure structure to zero. */
    memset(slaveConfig, 0, sizeof(*slaveConfig));

B
Bernard Xiong 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    slaveConfig->bitsPerFrame = 8;                      /*!< Bits per frame, minimum 8, maximum 4096.*/
    slaveConfig->cpol = kLPSPI_ClockPolarityActiveHigh; /*!< Clock polarity. */
    slaveConfig->cpha = kLPSPI_ClockPhaseFirstEdge;     /*!< Clock phase. */
    slaveConfig->direction = kLPSPI_MsbFirst;           /*!< MSB or LSB data shift direction. */

    slaveConfig->whichPcs = kLPSPI_Pcs0;                   /*!< Desired Peripheral Chip Select (pcs) */
    slaveConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow; /*!< Desired PCS active high or low */

    slaveConfig->pinCfg = kLPSPI_SdiInSdoOut;
    slaveConfig->dataOutConfig = kLpspiDataOutRetained;
}

misonyo's avatar
misonyo 已提交
344 345 346 347 348 349
/*!
 * brief Restores the LPSPI peripheral to reset state. Note that this function
 * sets all registers to reset state. As a result, the LPSPI module can't work after calling
 * this API.
 * param base LPSPI peripheral address.
*/
B
Bernard Xiong 已提交
350 351 352 353 354 355 356 357 358 359 360 361
void LPSPI_Reset(LPSPI_Type *base)
{
    /* Reset all internal logic and registers, except the Control Register. Remains set until cleared by software.*/
    base->CR |= LPSPI_CR_RST_MASK;

    /* Software reset doesn't reset the CR, so manual reset the FIFOs */
    base->CR |= LPSPI_CR_RRF_MASK | LPSPI_CR_RTF_MASK;

    /* Master logic is not reset and module is disabled.*/
    base->CR = 0x00U;
}

misonyo's avatar
misonyo 已提交
362 363 364 365
/*!
 * brief De-initializes the LPSPI peripheral. Call this API to disable the LPSPI clock.
 * param base LPSPI peripheral address.
 */
B
Bernard Xiong 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
void LPSPI_Deinit(LPSPI_Type *base)
{
    /* Reset to default value */
    LPSPI_Reset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_DisableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_DisableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh)
{
    uint32_t cfgr1Value = 0;
    /* Clear the PCS polarity bit */
    cfgr1Value = base->CFGR1 & ~(1U << (LPSPI_CFGR1_PCSPOL_SHIFT + pcs));

    /* Configure the PCS polarity bit according to the activeLowOrHigh setting */
    base->CFGR1 = cfgr1Value | ((uint32_t)activeLowOrHigh << (LPSPI_CFGR1_PCSPOL_SHIFT + pcs));
}

misonyo's avatar
misonyo 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*!
 * brief Sets the LPSPI baud rate in bits per second.
 *
 * This function takes in the desired bitsPerSec (baud rate) and calculates the nearest
 * possible baud rate without exceeding the desired baud rate and returns the
 * calculated baud rate in bits-per-second. It requires the caller to provide
 * the frequency of the module source clock (in Hertz). Note that the baud rate
 * does not go into effect until the Transmit Control Register (TCR) is programmed
 * with the prescale value. Hence, this function returns the prescale tcrPrescaleValue
 * parameter for later programming in the TCR.  The higher level
 * peripheral driver should alert the user of an out of range baud rate input.
 *
 * Note that the LPSPI module must first be disabled before configuring this.
 * Note that the LPSPI module must be configured for master mode before configuring this.
 *
 * param base LPSPI peripheral address.
 * param baudRate_Bps The desired baud rate in bits per second.
 * param srcClock_Hz Module source input clock in Hertz.
 * param tcrPrescaleValue The TCR prescale value needed to program the TCR.
 * return  The actual calculated baud rate. This function may also return a "0" if the
 *          LPSPI is not configured for master mode or if the LPSPI module is not disabled.
 */

B
Bernard Xiong 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base,
                                 uint32_t baudRate_Bps,
                                 uint32_t srcClock_Hz,
                                 uint32_t *tcrPrescaleValue)
{
    assert(tcrPrescaleValue);

    /* For master mode configuration only, if slave mode detected, return 0.
    * Also, the LPSPI module needs to be disabled first, if enabled, return 0
    */
    if ((!LPSPI_IsMaster(base)) || (base->CR & LPSPI_CR_MEN_MASK))
    {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t desiredBaudrate = baudRate_Bps;

    /* find combination of prescaler and scaler resulting in baudrate closest to the
    * requested value
    */
    min_diff = 0xFFFFFFFFU;

    /* Set to maximum divisor value bit settings so that if baud rate passed in is less
    * than the minimum possible baud rate, then the SPI will be configured to the lowest
    * possible baud rate
    */
    bestPrescaler = 7;
    bestScaler = 255;

    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 8) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 256) && min_diff; scaler++)
        {
            realBaudrate = (srcClock_Hz / (s_baudratePrescaler[prescaler] * (scaler + 2U)));

            /* calculate the baud rate difference based on the conditional statement
            * that states that the calculated baud rate must not exceed the desired baud rate
            */
            if (desiredBaudrate >= realBaudrate)
            {
                diff = desiredBaudrate - realBaudrate;
                if (min_diff > diff)
                {
                    /* a better match found */
                    min_diff = diff;
                    bestPrescaler = prescaler;
                    bestScaler = scaler;
                    bestBaudrate = realBaudrate;
                }
            }
        }
    }

    /* Write the best baud rate scalar to the CCR.
    * Note, no need to check for error since we've already checked to make sure the module is
    * disabled and in master mode. Also, there is a limit on the maximum divider so we will not
    * exceed this.
    */
    base->CCR = (base->CCR & ~LPSPI_CCR_SCKDIV_MASK) | LPSPI_CCR_SCKDIV(bestScaler);

    /* return the best prescaler value for user to use later */
    *tcrPrescaleValue = bestPrescaler;

    /* return the actual calculated baud rate */
    return bestBaudrate;
}

misonyo's avatar
misonyo 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/*!
 * brief Manually configures a specific LPSPI delay parameter (module must be disabled to
 *        change the delay values).
 *
 * This function configures the following:
 * SCK to PCS delay, or
 * PCS to SCK delay, or
 * The configurations must occur between the transfer delay.
 *
 * The delay names are available in type lpspi_delay_type_t.
 *
 * The user passes the desired delay along with the delay value.
 * This allows the user to directly set the delay values if they have
 * pre-calculated them or if they simply wish to manually increment the value.
 *
 * Note that the LPSPI module must first be disabled before configuring this.
 * Note that the LPSPI module must be configured for master mode before configuring this.
 *
 * param base LPSPI peripheral address.
 * param scaler The 8-bit delay value 0x00 to 0xFF (255).
 * param whichDelay The desired delay to configure, must be of type lpspi_delay_type_t.
 */
B
Bernard Xiong 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t whichDelay)
{
    /*These settings are only relevant in master mode */
    switch (whichDelay)
    {
        case kLPSPI_PcsToSck:
            base->CCR = (base->CCR & (~LPSPI_CCR_PCSSCK_MASK)) | LPSPI_CCR_PCSSCK(scaler);

            break;
        case kLPSPI_LastSckToPcs:
            base->CCR = (base->CCR & (~LPSPI_CCR_SCKPCS_MASK)) | LPSPI_CCR_SCKPCS(scaler);

            break;
        case kLPSPI_BetweenTransfer:
            base->CCR = (base->CCR & (~LPSPI_CCR_DBT_MASK)) | LPSPI_CCR_DBT(scaler);

            break;
        default:
            assert(false);
            break;
    }
}

misonyo's avatar
misonyo 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*!
 * brief Calculates the delay based on the desired delay input in nanoseconds (module must be
 *        disabled to change the delay values).
 *
 * This function calculates the values for the following:
 * SCK to PCS delay, or
 * PCS to SCK delay, or
 * The configurations must occur between the transfer delay.
 *
 * The delay names are available in type lpspi_delay_type_t.
 *
 * The user passes the desired delay and the desired delay value in
 * nano-seconds.  The function calculates the value needed for the desired delay parameter
 * and returns the actual calculated delay because an exact delay match may not be possible. In this
 * case, the closest match is calculated without going below the desired delay value input.
 * It is possible to input a very large delay value that exceeds the capability of the part, in
 * which case the maximum supported delay is returned. It is up to the higher level
 * peripheral driver to alert the user of an out of range delay input.
 *
 * Note that the LPSPI module must be configured for master mode before configuring this. And note that
 * the delayTime = LPSPI_clockSource / (PRESCALE * Delay_scaler).
 *
 * param base LPSPI peripheral address.
 * param delayTimeInNanoSec The desired delay value in nano-seconds.
 * param whichDelay The desired delay to configuration, which must be of type lpspi_delay_type_t.
 * param srcClock_Hz  Module source input clock in Hertz.
 * return actual Calculated delay value in nano-seconds.
 */
B
Bernard Xiong 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base,
                                   uint32_t delayTimeInNanoSec,
                                   lpspi_delay_type_t whichDelay,
                                   uint32_t srcClock_Hz)
{
    uint64_t realDelay, bestDelay;
    uint32_t scaler, bestScaler;
    uint32_t diff, min_diff;
    uint64_t initialDelayNanoSec;
    uint32_t clockDividedPrescaler;

    /* For delay between transfer, an additional scaler value is needed */
    uint32_t additionalScaler = 0;

    /*As the RM note, the LPSPI baud rate clock is itself divided by the PRESCALE setting, which can vary between
     * transfers.*/
    clockDividedPrescaler =
        srcClock_Hz / s_baudratePrescaler[(base->TCR & LPSPI_TCR_PRESCALE_MASK) >> LPSPI_TCR_PRESCALE_SHIFT];

    /* Find combination of prescaler and scaler resulting in the delay closest to the requested value.*/
    min_diff = 0xFFFFFFFFU;

    /* Initialize scaler to max value to generate the max delay */
    bestScaler = 0xFFU;

    /* Calculate the initial (min) delay and maximum possible delay based on the specific delay as
    * the delay divisors are slightly different based on which delay we are configuring.
    */
    if (whichDelay == kLPSPI_BetweenTransfer)
    {
        /* First calculate the initial, default delay, note min delay is 2 clock cycles. Due to large size of
         calculated values (uint64_t), we need to break up the calculation into several steps to ensure
         accurate calculated results
         */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec *= 2U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 257U; /* based on DBT+2, or 255 + 2 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 1U;
    }
    else
    {
        /* First calculate the initial, default delay, min delay is 1 clock cycle. Due to large size of calculated
        values (uint64_t), we need to break up the calculation into several steps to ensure accurate calculated
        results.
        */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 256U; /* based on SCKPCS+1 or PCSSCK+1, or 255 + 1 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 0;
    }

    /* If the initial, default delay is already greater than the desired delay, then
    * set the delay to their initial value (0) and return the delay. In other words,
    * there is no way to decrease the delay value further.
    */
    if (initialDelayNanoSec >= delayTimeInNanoSec)
    {
        LPSPI_MasterSetDelayScaler(base, 0, whichDelay);
        return initialDelayNanoSec;
    }

    /* If min_diff = 0, the exit for loop */
    for (scaler = 0; (scaler < 256U) && min_diff; scaler++)
    {
        /* Calculate the real delay value as we cycle through the scaler values.
        Due to large size of calculated values (uint64_t), we need to break up the
        calculation into several steps to ensure accurate calculated results
        */
        realDelay = 1000000000U;
        realDelay *= (scaler + 1 + additionalScaler);
        realDelay /= clockDividedPrescaler;

        /* calculate the delay difference based on the conditional statement
        * that states that the calculated delay must not be less then the desired delay
        */
        if (realDelay >= delayTimeInNanoSec)
        {
            diff = realDelay - delayTimeInNanoSec;
            if (min_diff > diff)
            {
                /* a better match found */
                min_diff = diff;
                bestScaler = scaler;
                bestDelay = realDelay;
            }
        }
    }

    /* write the best scaler value for the delay */
    LPSPI_MasterSetDelayScaler(base, bestScaler, whichDelay);

    /* return the actual calculated delay value (in ns) */
    return bestDelay;
}

/*Transactional APIs -- Master*/

misonyo's avatar
misonyo 已提交
674 675 676 677 678 679 680 681 682 683 684
/*!
 * brief Initializes the LPSPI master handle.
 *
 * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs.  Usually, for a
 * specified LPSPI instance, call this API once to get the initialized handle.

 * param base LPSPI peripheral address.
 * param handle LPSPI handle pointer to lpspi_master_handle_t.
 * param callback DSPI callback.
 * param userData callback function parameter.
 */
B
Bernard Xiong 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base,
                                      lpspi_master_handle_t *handle,
                                      lpspi_master_transfer_callback_t callback,
                                      void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiMasterIsr = LPSPI_MasterTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

misonyo's avatar
misonyo 已提交
704 705 706 707 708 709 710 711
/*!
* brief Check the argument for transfer .
*
* param transfer the transfer struct to be used.
* param bitPerFrame The bit size of one frame.
* param bytePerFrame The byte size of one frame.
* return Return true for right and false for wrong.
*/
B
Bernard Xiong 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
bool LPSPI_CheckTransferArgument(lpspi_transfer_t *transfer, uint32_t bitsPerFrame, uint32_t bytesPerFrame)
{
    assert(transfer);

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0)
    {
        return false;
    }

    /* If both send buffer and receive buffer is null */
    if ((!(transfer->txData)) && (!(transfer->rxData)))
    {
        return false;
    }

    /*The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4 .
     *For bytesPerFrame greater than 4 situation:
     *the transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4 ,
     *otherwise , the transfer data size can be integer multiples of bytesPerFrame.
     */
    if (bytesPerFrame <= 4)
    {
        if ((transfer->dataSize % bytesPerFrame) != 0)
        {
            return false;
        }
    }
    else
    {
        if ((bytesPerFrame % 4U) != 0)
        {
            if (transfer->dataSize != bytesPerFrame)
            {
                return false;
            }
        }
        else
        {
            if ((transfer->dataSize % bytesPerFrame) != 0)
            {
                return false;
            }
        }
    }

    return true;
}

misonyo's avatar
misonyo 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/*!
 * brief LPSPI master transfer data using a polling method.
 *
 * This function transfers data using a  polling method. This is a blocking function, which does not return until all
 * transfers have been
 * completed.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
B
Bernard Xiong 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
{
    assert(transfer);

    uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp = 0U;
    uint8_t dummyData = g_lpspiDummyData[LPSPI_GetInstance(base)];

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that LPSPI is not busy.*/
    if (LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)
    {
        return kStatus_LPSPI_Busy;
    }

    uint8_t *txData = transfer->txData;
    uint8_t *rxData = transfer->rxData;
    uint32_t txRemainingByteCount = transfer->dataSize;
    uint32_t rxRemainingByteCount = transfer->dataSize;

    uint8_t bytesEachWrite;
    uint8_t bytesEachRead;

    uint32_t readData = 0;
    uint32_t wordToSend =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    uint32_t fifoSize = LPSPI_GetRxFifoSize(base);

    uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    bool isPcsContinuous = (bool)(transfer->configFlags & kLPSPI_MasterPcsContinuous);
    bool isRxMask = false;
    bool isByteSwap = (bool)(transfer->configFlags & kLPSPI_MasterByteSwap);

    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);

    if (!rxData)
    {
        isRxMask = true;
    }

    LPSPI_Enable(base, false);
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (!txData)
        {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((txData) && (rxData))
        {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);

    if (bytesPerFrame <= 4)
    {
        bytesEachWrite = bytesPerFrame;
        bytesEachRead = bytesPerFrame;
    }
    else
    {
        bytesEachWrite = 4;
        bytesEachRead = 4;
    }

    /*Write the TX data until txRemainingByteCount is equal to 0 */
    while (txRemainingByteCount > 0)
    {
        if (txRemainingByteCount < bytesEachWrite)
        {
            bytesEachWrite = txRemainingByteCount;
        }

        /*Wait until TX FIFO is not full*/
        while (LPSPI_GetTxFifoCount(base) == fifoSize)
        {
        }

        if (txData)
        {
            wordToSend = LPSPI_CombineWriteData(txData, bytesEachWrite, isByteSwap);
            txData += bytesEachWrite;
        }

        LPSPI_WriteData(base, wordToSend);
        txRemainingByteCount -= bytesEachWrite;

        /*Check whether there is RX data in RX FIFO . Read out the RX data so that the RX FIFO would not overrun.*/
        if (rxData)
        {
            while (LPSPI_GetRxFifoCount(base))
            {
                readData = LPSPI_ReadData(base);
                if (rxRemainingByteCount < bytesEachRead)
                {
                    bytesEachRead = rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
        }
    }

    /* After write all the data in TX FIFO , should write the TCR_CONTC to 0 to de-assert the PCS. Note that TCR
     * register also use the TX FIFO.
     */
    while ((LPSPI_GetTxFifoCount(base) == fifoSize))
    {
    }
    base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));

    /*Read out the RX data in FIFO*/
    if (rxData)
    {
        while (rxRemainingByteCount > 0)
        {
            while (LPSPI_GetRxFifoCount(base))
            {
                readData = LPSPI_ReadData(base);

                if (rxRemainingByteCount < bytesEachRead)
                {
                    bytesEachRead = rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
        }
    }
    else
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
        while (!(LPSPI_GetStatusFlags(base) & kLPSPI_TransferCompleteFlag))
        {
        }
    }

    return kStatus_Success;
}

misonyo's avatar
misonyo 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*!
 * brief LPSPI master transfer data using an interrupt method.
 *
 * This function transfers data using an interrupt method. This is a non-blocking function, which returns right away.
 * When all data
 * is transferred, the callback function is called.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
B
Bernard Xiong 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp = 0U;
    uint8_t dummyData = g_lpspiDummyData[LPSPI_GetInstance(base)];

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kLPSPI_Busy)
    {
        return kStatus_LPSPI_Busy;
    }

    handle->state = kLPSPI_Busy;

    bool isRxMask = false;

    uint8_t txWatermark;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;

    handle->writeTcrInIsr = false;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3) / 4);
    handle->readRegRemainingTimes = handle->writeRegRemainingTimes;

    handle->txBuffIfNull =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isPcsContinuous = (bool)(transfer->configFlags & kLPSPI_MasterPcsContinuous);
    handle->isByteSwap = (bool)(transfer->configFlags & kLPSPI_MasterByteSwap);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    if (handle->fifoSize > 1)
    {
        txWatermark = 1;
        handle->rxWatermark = handle->fifoSize - 2;
    }
    else
    {
        txWatermark = 0;
        handle->rxWatermark = 0;
    }

    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    LPSPI_Enable(base, false);
    /*Transfers will stall when transmit FIFO is empty or receive FIFO is full. */
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (!handle->txData)
        {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((handle->txData) && (handle->rxData))
        {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    /* If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).
     * For master transfer , we'd better not masked the transmit data in TCR since the transfer flow is hard to
     * controlled by software.*/
    if (handle->rxData == NULL)
    {
        isRxMask = true;
        handle->rxRemainingByteCount = 0;
    }

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(handle->isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) |
        LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4)
    {
        handle->bytesEachWrite = bytesPerFrame;
        handle->bytesEachRead = bytesPerFrame;
    }
    else
    {
        handle->bytesEachWrite = 4;
        handle->bytesEachRead = 4;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
    while (LPSPI_GetTxFifoCount(base) != 0)
    {
    }
    /*Fill up the TX data in FIFO */
    LPSPI_MasterTransferFillUpTxFifo(base, handle);

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData)
    {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(handle->readRegRemainingTimes - 1);
        }

        LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
    }
    else
    {
        LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend = 0;

    /* Make sure the difference in remaining TX and RX byte counts does not exceed FIFO depth
    * and that the number of TX FIFO entries does not exceed the FIFO depth.
    * But no need to make the protection if there is no rxData.
    */
    while ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)) &&
           (((handle->readRegRemainingTimes - handle->writeRegRemainingTimes) < handle->fifoSize) ||
            (handle->rxData == NULL)))
    {
        if (handle->txRemainingByteCount < handle->bytesEachWrite)
        {
            handle->bytesEachWrite = handle->txRemainingByteCount;
        }

        if (handle->txData)
        {
            wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
            handle->txData += handle->bytesEachWrite;
        }
        else
        {
            wordToSend = handle->txBuffIfNull;
        }

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        /*Decrease the write TX register times.*/
        --handle->writeRegRemainingTimes;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= handle->bytesEachWrite;

        if (handle->txRemainingByteCount == 0)
        {
            /* If PCS is continuous, update TCR to de-assert PCS */
            if (handle->isPcsContinuous)
            {
                /* Only write to the TCR if the FIFO has room */
                if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)))
                {
                    base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                    handle->writeTcrInIsr = false;
                }
                /* Else, set a global flag to tell the ISR to do write to the TCR */
                else
                {
                    handle->writeTcrInIsr = true;
                }
            }
            break;
        }
    }
}

static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    handle->state = kLPSPI_Idle;

    if (handle->callback)
    {
        handle->callback(base, handle, kStatus_Success, handle->userData);
    }
}

misonyo's avatar
misonyo 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*!
 * brief Gets the master transfer remaining bytes.
 *
 * This function gets the master transfer remaining bytes.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 * param count Number of bytes transferred so far by the non-blocking transaction.
 * return status of status_t.
 */
B
Bernard Xiong 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kLPSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData)
    {
        remainingByte = handle->rxRemainingByteCount;
    }
    else
    {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

misonyo's avatar
misonyo 已提交
1226 1227 1228 1229 1230 1231 1232 1233
/*!
 * brief LPSPI master abort transfer which uses an interrupt method.
 *
 * This function aborts a transfer which uses an interrupt method.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 */
B
Bernard Xiong 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    LPSPI_Reset(base);

    handle->state = kLPSPI_Idle;
    handle->txRemainingByteCount = 0;
    handle->rxRemainingByteCount = 0;
}

misonyo's avatar
misonyo 已提交
1248 1249 1250 1251 1252 1253 1254 1255
/*!
 * brief LPSPI Master IRQ handler function.
 *
 * This function processes the LPSPI transmit and receive IRQ.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 */
B
Bernard Xiong 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t readData;

    if (handle->rxData != NULL)
    {
        if (handle->rxRemainingByteCount)
        {
            /* First, disable the interrupts to avoid potentially triggering another interrupt
            * while reading out the RX FIFO as more data may be coming into the RX FIFO. We'll
            * re-enable the interrupts based on the LPSPI state after reading out the FIFO.
            */
            LPSPI_DisableInterrupts(base, kLPSPI_RxInterruptEnable);

            while ((LPSPI_GetRxFifoCount(base)) && (handle->rxRemainingByteCount))
            {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < handle->bytesEachRead)
                {
                    handle->bytesEachRead = handle->rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, handle->bytesEachRead, handle->isByteSwap);
                handle->rxData += handle->bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= handle->bytesEachRead;
            }

            /* Re-enable the interrupts only if rxCount indicates there is more data to receive,
            * else we may get a spurious interrupt.
            * */
            if (handle->rxRemainingByteCount)
            {
                /* Set the TDF and RDF interrupt enables simultaneously to avoid race conditions */
                LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= (handle->rxWatermark))
        {
            base->FCR =
                (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                LPSPI_FCR_RXWATER((handle->readRegRemainingTimes > 1) ? (handle->readRegRemainingTimes - 1U) : (0U));
        }
    }

    if (handle->txRemainingByteCount)
    {
        LPSPI_MasterTransferFillUpTxFifo(base, handle);
    }
    else
    {
        if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)))
        {
            if ((handle->isPcsContinuous) && (handle->writeTcrInIsr))
            {
                base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                handle->writeTcrInIsr = false;
            }
        }
    }

    if ((handle->txRemainingByteCount == 0) && (handle->rxRemainingByteCount == 0) && (!handle->writeTcrInIsr))
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
        if (handle->rxData == NULL)
        {
            if (LPSPI_GetStatusFlags(base) & kLPSPI_TransferCompleteFlag)
            {
                /* Complete the transfer and disable the interrupts */
                LPSPI_MasterTransferComplete(base, handle);
            }
            else
            {
                LPSPI_EnableInterrupts(base, kLPSPI_TransferCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);
            }
        }
        else
        {
            /* Complete the transfer and disable the interrupts */
            LPSPI_MasterTransferComplete(base, handle);
        }
    }
}

/*Transactional APIs -- Slave*/
misonyo's avatar
misonyo 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*!
 * brief Initializes the LPSPI slave handle.
 *
 * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs.  Usually, for a
 * specified LPSPI instance, call this API once to get the initialized handle.
 *
 * param base LPSPI peripheral address.
 * param handle LPSPI handle pointer to lpspi_slave_handle_t.
 * param callback DSPI callback.
 * param userData callback function parameter.
 */
B
Bernard Xiong 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base,
                                     lpspi_slave_handle_t *handle,
                                     lpspi_slave_transfer_callback_t callback,
                                     void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiSlaveIsr = LPSPI_SlaveTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

misonyo's avatar
misonyo 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*!
 * brief LPSPI slave transfer data using an interrupt method.
 *
 * This function transfer data using an interrupt method. This is a non-blocking function, which returns right away.
 * When all data
 * is transferred, the callback function is called.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
B
Bernard Xiong 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp = 0U;

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kLPSPI_Busy)
    {
        return kStatus_LPSPI_Busy;
    }
    handle->state = kLPSPI_Busy;

    bool isRxMask = false;
    bool isTxMask = false;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_SLAVE_PCS_MASK) >> LPSPI_SLAVE_PCS_SHIFT;

    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3) / 4);
    handle->readRegRemainingTimes = handle->writeRegRemainingTimes;

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isByteSwap = (bool)(transfer->configFlags & kLPSPI_SlaveByteSwap);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    uint8_t txWatermark;
    if (handle->fifoSize > 1)
    {
        txWatermark = 1;
        handle->rxWatermark = handle->fifoSize - 2;
    }
    else
    {
        txWatermark = 0;
        handle->rxWatermark = 0;
    }
    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (!handle->txData)
        {
            LPSPI_Enable(base, false);
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
            LPSPI_Enable(base, true);
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((handle->txData) && (handle->rxData))
        {
            return kStatus_InvalidArgument;
        }
    }

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    /*If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).*/
    if (handle->rxData == NULL)
    {
        isRxMask = true;
        handle->rxRemainingByteCount = 0;
    }

    /*If there is not txData , can mask the transmit data (no data is loaded from transmit FIFO and output pin
     * is tristated).
     */
    if (handle->txData == NULL)
    {
        isTxMask = true;
        handle->txRemainingByteCount = 0;
    }

    base->TCR = (base->TCR &
                 ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_TXMSK_MASK |
                   LPSPI_TCR_PCS_MASK)) |
                LPSPI_TCR_CONT(0) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_TXMSK(isTxMask) |
                LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4)
    {
        handle->bytesEachWrite = bytesPerFrame;
        handle->bytesEachRead = bytesPerFrame;
    }
    else
    {
        handle->bytesEachWrite = 4;
        handle->bytesEachRead = 4;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
    while (LPSPI_GetTxFifoCount(base) != 0)
    {
    }

    /*Fill up the TX data in FIFO */
    if (handle->txData)
    {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData)
    {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(handle->readRegRemainingTimes - 1);
        }

        LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
    }
    else
    {
        LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable);
    }

    if (handle->rxData)
    {
        /* RX FIFO overflow request enable */
        LPSPI_EnableInterrupts(base, kLPSPI_ReceiveErrorInterruptEnable);
    }
    if (handle->txData)
    {
        /* TX FIFO underflow request enable */
        LPSPI_EnableInterrupts(base, kLPSPI_TransmitErrorInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend = 0;

    while (LPSPI_GetTxFifoCount(base) < (handle->fifoSize))
    {
        if (handle->txRemainingByteCount < handle->bytesEachWrite)
        {
            handle->bytesEachWrite = handle->txRemainingByteCount;
        }

        wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
        handle->txData += handle->bytesEachWrite;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= handle->bytesEachWrite;

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        if (handle->txRemainingByteCount == 0)
        {
            break;
        }
    }
}

static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    status_t status = 0;

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    if (handle->state == kLPSPI_Error)
    {
        status = kStatus_LPSPI_Error;
    }
    else
    {
        status = kStatus_Success;
    }

    handle->state = kLPSPI_Idle;

    if (handle->callback)
    {
        handle->callback(base, handle, status, handle->userData);
    }
}

misonyo's avatar
misonyo 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/*!
 * brief Gets the slave transfer remaining bytes.
 *
 * This function gets the slave transfer remaining bytes.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 * param count Number of bytes transferred so far by the non-blocking transaction.
 * return status of status_t.
 */
B
Bernard Xiong 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kLPSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData)
    {
        remainingByte = handle->rxRemainingByteCount;
    }
    else
    {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

misonyo's avatar
misonyo 已提交
1660 1661 1662 1663 1664 1665 1666 1667
/*!
 * brief LPSPI slave aborts a transfer which uses an interrupt method.
 *
 * This function aborts a transfer which uses an interrupt method.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 */
B
Bernard Xiong 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);

    LPSPI_Reset(base);

    handle->state = kLPSPI_Idle;
    handle->txRemainingByteCount = 0;
    handle->rxRemainingByteCount = 0;
}

misonyo's avatar
misonyo 已提交
1682 1683 1684 1685 1686 1687 1688 1689
/*!
 * brief LPSPI Slave IRQ handler function.
 *
 * This function processes the LPSPI transmit and receives an IRQ.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 */
B
Bernard Xiong 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t readData;   /* variable to store word read from RX FIFO */
    uint32_t wordToSend; /* variable to store word to write to TX FIFO */

    if (handle->rxData != NULL)
    {
        if (handle->rxRemainingByteCount > 0)
        {
            while (LPSPI_GetRxFifoCount(base))
            {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < handle->bytesEachRead)
                {
                    handle->bytesEachRead = handle->rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, handle->bytesEachRead, handle->isByteSwap);
                handle->rxData += handle->bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= handle->bytesEachRead;

                if ((handle->txRemainingByteCount > 0) && (handle->txData != NULL))
                {
                    if (handle->txRemainingByteCount < handle->bytesEachWrite)
                    {
                        handle->bytesEachWrite = handle->txRemainingByteCount;
                    }

                    wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
                    handle->txData += handle->bytesEachWrite;

                    /*Decrease the remaining TX byte count.*/
                    handle->txRemainingByteCount -= handle->bytesEachWrite;

                    /*Write the word to TX register*/
                    LPSPI_WriteData(base, wordToSend);
                }

                if (handle->rxRemainingByteCount == 0)
                {
                    break;
                }
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= (handle->rxWatermark))
        {
            base->FCR =
                (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                LPSPI_FCR_RXWATER((handle->readRegRemainingTimes > 1) ? (handle->readRegRemainingTimes - 1U) : (0U));
        }
    }
    else if ((handle->txRemainingByteCount) && (handle->txData != NULL))
    {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }
    else
    {
        __NOP();
    }

    if ((handle->txRemainingByteCount == 0) && (handle->rxRemainingByteCount == 0))
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets and the TX FIFO empty*/
        if (handle->rxData == NULL)
        {
            if ((LPSPI_GetStatusFlags(base) & kLPSPI_FrameCompleteFlag) && (LPSPI_GetTxFifoCount(base) == 0))
            {
                /* Complete the transfer and disable the interrupts */
                LPSPI_SlaveTransferComplete(base, handle);
            }
            else
            {
                LPSPI_ClearStatusFlags(base, kLPSPI_FrameCompleteFlag);
                LPSPI_EnableInterrupts(base, kLPSPI_FrameCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);
            }
        }
        else
        {
            /* Complete the transfer and disable the interrupts */
            LPSPI_SlaveTransferComplete(base, handle);
        }
    }

    /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
    if ((LPSPI_GetStatusFlags(base) & kLPSPI_TransmitErrorFlag) && (base->IER & LPSPI_IER_TEIE_MASK))
    {
        LPSPI_ClearStatusFlags(base, kLPSPI_TransmitErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData)
        {
            handle->state = kLPSPI_Error;
        }
        handle->errorCount++;
    }
    /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
    if ((LPSPI_GetStatusFlags(base) & kLPSPI_ReceiveErrorFlag) && (base->IER & LPSPI_IER_REIE_MASK))
    {
        LPSPI_ClearStatusFlags(base, kLPSPI_ReceiveErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData)
        {
            handle->state = kLPSPI_Error;
        }
        handle->errorCount++;
    }
}

static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint32_t bytesEachWrite, bool isByteSwap)
{
    assert(txData);

    uint32_t wordToSend = 0;

    switch (bytesEachWrite)
    {
        case 1:
            wordToSend = *txData;
            ++txData;
            break;

        case 2:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }

            break;

        case 3:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }
            break;

        case 4:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 24U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 24U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }
            break;

        default:
            assert(false);
            break;
    }
    return wordToSend;
}

static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint32_t bytesEachRead, bool isByteSwap)
{
    assert(rxData);

    switch (bytesEachRead)
    {
        case 1:
            *rxData = readData;
            ++rxData;
            break;

        case 2:
            if (!isByteSwap)
            {
                *rxData = readData;
                ++rxData;
                *rxData = readData >> 8;
                ++rxData;
            }
            else
            {
                *rxData = readData >> 8;
                ++rxData;
                *rxData = readData;
                ++rxData;
            }
            break;

        case 3:
            if (!isByteSwap)
            {
                *rxData = readData;
                ++rxData;
                *rxData = readData >> 8;
                ++rxData;
                *rxData = readData >> 16;
                ++rxData;
            }
            else
            {
                *rxData = readData >> 16;
                ++rxData;
                *rxData = readData >> 8;
                ++rxData;
                *rxData = readData;
                ++rxData;
            }
            break;

        case 4:
            if (!isByteSwap)
            {
                *rxData = readData;
                ++rxData;
                *rxData = readData >> 8;
                ++rxData;
                *rxData = readData >> 16;
                ++rxData;
                *rxData = readData >> 24;
                ++rxData;
            }
            else
            {
                *rxData = readData >> 24;
                ++rxData;
                *rxData = readData >> 16;
                ++rxData;
                *rxData = readData >> 8;
                ++rxData;
                *rxData = readData;
                ++rxData;
            }
            break;

        default:
            assert(false);
            break;
    }
}

static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param)
{
    if (LPSPI_IsMaster(base))
    {
        s_lpspiMasterIsr(base, (lpspi_master_handle_t *)param);
    }
    else
    {
        s_lpspiSlaveIsr(base, (lpspi_slave_handle_t *)param);
    }
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#if defined(LPSPI0)
void LPSPI0_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[0]);
    LPSPI_CommonIRQHandler(LPSPI0, s_lpspiHandle[0]);
}
#endif

#if defined(LPSPI1)
void LPSPI1_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[1]);
    LPSPI_CommonIRQHandler(LPSPI1, s_lpspiHandle[1]);
}
#endif

#if defined(LPSPI2)
void LPSPI2_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[2]);
    LPSPI_CommonIRQHandler(LPSPI2, s_lpspiHandle[2]);
}
#endif

#if defined(LPSPI3)
void LPSPI3_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[3]);
    LPSPI_CommonIRQHandler(LPSPI3, s_lpspiHandle[3]);
}
#endif

#if defined(LPSPI4)
void LPSPI4_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[4]);
    LPSPI_CommonIRQHandler(LPSPI4, s_lpspiHandle[4]);
}
#endif

#if defined(LPSPI5)
void LPSPI5_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[5]);
    LPSPI_CommonIRQHandler(LPSPI5, s_lpspiHandle[5]);
}
#endif

#if defined(DMA__LPSPI0)
void DMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
}
#endif

#if defined(DMA__LPSPI1)
void DMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
}
#endif
#if defined(DMA__LPSPI2)
void DMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
}
#endif

#if defined(DMA__LPSPI3)
void DMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
}
#endif

#if defined(ADMA__LPSPI0)
void ADMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
}
#endif

#if defined(ADMA__LPSPI1)
void ADMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
}
#endif
#if defined(ADMA__LPSPI2)
void ADMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
}
#endif

#if defined(ADMA__LPSPI3)
void ADMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
}
#endif