提交 93487de0 编写于 作者: J jinhai

Merge branch '0.5.0' into '0.5.0'

Merge from github

See merge request megasearch/milvus!766

Former-commit-id: b631362629e74f2ecc06e8c35d197942bcc94d4a
...@@ -26,6 +26,7 @@ Please mark all change in change log and use the ticket from JIRA. ...@@ -26,6 +26,7 @@ Please mark all change in change log and use the ticket from JIRA.
- MS-653 - When config check fail, Milvus close without message - MS-653 - When config check fail, Milvus close without message
- MS-654 - Describe index timeout when building index - MS-654 - Describe index timeout when building index
- MS-658 - Fix SQ8 Hybrid can't search - MS-658 - Fix SQ8 Hybrid can't search
- \#9 Change default gpu_cache_capacity to 4
- MS-665 - IVF_SQ8H search crash when no GPU resource in search_resources - MS-665 - IVF_SQ8H search crash when no GPU resource in search_resources
- \#20 - C++ sdk example get grpc error - \#20 - C++ sdk example get grpc error
- \#23 - Add unittest to improve code coverage - \#23 - Add unittest to improve code coverage
...@@ -75,6 +76,7 @@ Please mark all change in change log and use the ticket from JIRA. ...@@ -75,6 +76,7 @@ Please mark all change in change log and use the ticket from JIRA.
- MS-624 - Re-organize project directory for open-source - MS-624 - Re-organize project directory for open-source
- MS-635 - Add compile option to support customized faiss - MS-635 - Add compile option to support customized faiss
- MS-660 - add ubuntu_build_deps.sh - MS-660 - add ubuntu_build_deps.sh
- \#18 - Add all test cases
# Milvus 0.4.0 (2019-09-12) # Milvus 0.4.0 (2019-09-12)
......
...@@ -76,11 +76,8 @@ load_simple_config() { ...@@ -76,11 +76,8 @@ load_simple_config() {
} }
if (not find_build_gpu_id) { if (not find_build_gpu_id) {
ResMgrInst::GetInstance()->Add(ResourceFactory::Create(std::to_string(build_gpu_id), ResMgrInst::GetInstance()->Add(
"GPU", ResourceFactory::Create(std::to_string(build_gpu_id), "GPU", build_gpu_id, true, true));
build_gpu_id,
true,
true));
ResMgrInst::GetInstance()->Connect("cpu", std::to_string(build_gpu_id), pcie); ResMgrInst::GetInstance()->Connect("cpu", std::to_string(build_gpu_id), pcie);
} }
} }
......
target/
.idea/
test-output/
lib/*
def FileTransfer (sourceFiles, remoteDirectory, remoteIP, protocol = "ftp", makeEmptyDirs = true) {
if (protocol == "ftp") {
ftpPublisher masterNodeName: '', paramPublish: [parameterName: ''], alwaysPublishFromMaster: false, continueOnError: false, failOnError: true, publishers: [
[configName: "${remoteIP}", transfers: [
[asciiMode: false, cleanRemote: false, excludes: '', flatten: false, makeEmptyDirs: "${makeEmptyDirs}", noDefaultExcludes: false, patternSeparator: '[, ]+', remoteDirectory: "${remoteDirectory}", remoteDirectorySDF: false, removePrefix: '', sourceFiles: "${sourceFiles}"]], usePromotionTimestamp: true, useWorkspaceInPromotion: false, verbose: true
]
]
}
}
return this
try {
def result = sh script: "helm status ${env.JOB_NAME}-${env.BUILD_NUMBER}", returnStatus: true
if (!result) {
sh "helm del --purge ${env.JOB_NAME}-${env.BUILD_NUMBER}"
}
} catch (exc) {
def result = sh script: "helm status ${env.JOB_NAME}-${env.BUILD_NUMBER}", returnStatus: true
if (!result) {
sh "helm del --purge ${env.JOB_NAME}-${env.BUILD_NUMBER}"
}
throw exc
}
try {
sh 'helm init --client-only --skip-refresh --stable-repo-url https://kubernetes.oss-cn-hangzhou.aliyuncs.com/charts'
sh 'helm repo add milvus https://registry.zilliz.com/chartrepo/milvus'
sh 'helm repo update'
dir ("milvus-helm") {
checkout([$class: 'GitSCM', branches: [[name: "${HELM_BRANCH}"]], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[credentialsId: "${params.GIT_USER}", url: "git@192.168.1.105:megasearch/milvus-helm.git", name: 'origin', refspec: "+refs/heads/${HELM_BRANCH}:refs/remotes/origin/${HELM_BRANCH}"]]])
dir ("milvus/milvus-gpu") {
sh "helm install --wait --timeout 300 --set engine.image.tag=${IMAGE_TAG} --set expose.type=clusterIP --name ${env.JOB_NAME}-${env.BUILD_NUMBER} -f ci/values.yaml --namespace milvus-sdk-test --version 0.3.1 ."
}
}
} catch (exc) {
echo 'Helm running failed!'
sh "helm del --purge ${env.JOB_NAME}-${env.BUILD_NUMBER}"
throw exc
}
timeout(time: 30, unit: 'MINUTES') {
try {
dir ("milvus-java-test") {
sh "mvn clean install"
sh "java -cp \"target/MilvusSDkJavaTest-1.0-SNAPSHOT.jar:lib/*\" com.MainClass -h ${env.JOB_NAME}-${env.BUILD_NUMBER}-milvus-gpu-engine.milvus-sdk-test.svc.cluster.local"
}
} catch (exc) {
echo 'Milvus-SDK-Java Integration Test Failed !'
throw exc
}
}
def notify() {
if (!currentBuild.resultIsBetterOrEqualTo('SUCCESS')) {
// Send an email only if the build status has changed from green/unstable to red
emailext subject: '$DEFAULT_SUBJECT',
body: '$DEFAULT_CONTENT',
recipientProviders: [
[$class: 'DevelopersRecipientProvider'],
[$class: 'RequesterRecipientProvider']
],
replyTo: '$DEFAULT_REPLYTO',
to: '$DEFAULT_RECIPIENTS'
}
}
return this
timeout(time: 5, unit: 'MINUTES') {
dir ("${PROJECT_NAME}_test") {
if (fileExists('test_out')) {
def fileTransfer = load "${env.WORKSPACE}/ci/function/file_transfer.groovy"
fileTransfer.FileTransfer("test_out/", "${PROJECT_NAME}/test/${JOB_NAME}-${BUILD_ID}", 'nas storage')
if (currentBuild.resultIsBetterOrEqualTo('SUCCESS')) {
echo "Milvus Dev Test Out Viewer \"ftp://192.168.1.126/data/${PROJECT_NAME}/test/${JOB_NAME}-${BUILD_ID}\""
}
} else {
error("Milvus Dev Test Out directory don't exists!")
}
}
}
pipeline {
agent none
options {
timestamps()
}
environment {
SRC_BRANCH = "master"
IMAGE_TAG = "${params.IMAGE_TAG}-release"
HELM_BRANCH = "${params.IMAGE_TAG}"
TEST_URL = "git@192.168.1.105:Test/milvus-java-test.git"
TEST_BRANCH = "${params.IMAGE_TAG}"
}
stages {
stage("Setup env") {
agent {
kubernetes {
label 'dev-test'
defaultContainer 'jnlp'
yaml """
apiVersion: v1
kind: Pod
metadata:
labels:
app: milvus
componet: test
spec:
containers:
- name: milvus-testframework-java
image: registry.zilliz.com/milvus/milvus-java-test:v0.1
command:
- cat
tty: true
volumeMounts:
- name: kubeconf
mountPath: /root/.kube/
readOnly: true
volumes:
- name: kubeconf
secret:
secretName: test-cluster-config
"""
}
}
stages {
stage("Deploy Server") {
steps {
gitlabCommitStatus(name: 'Deloy Server') {
container('milvus-testframework-java') {
script {
load "${env.WORKSPACE}/milvus-java-test/ci/jenkinsfile/deploy_server.groovy"
}
}
}
}
}
stage("Integration Test") {
steps {
gitlabCommitStatus(name: 'Integration Test') {
container('milvus-testframework-java') {
script {
print "In integration test stage"
load "${env.WORKSPACE}/milvus-java-test/ci/jenkinsfile/integration_test.groovy"
}
}
}
}
}
stage ("Cleanup Env") {
steps {
gitlabCommitStatus(name: 'Cleanup Env') {
container('milvus-testframework-java') {
script {
load "${env.WORKSPACE}/milvus-java-test/ci/jenkinsfile/cleanup.groovy"
}
}
}
}
}
}
post {
always {
container('milvus-testframework-java') {
script {
load "${env.WORKSPACE}/milvus-java-test/ci/jenkinsfile/cleanup.groovy"
}
}
}
success {
script {
echo "Milvus java-sdk test success !"
}
}
aborted {
script {
echo "Milvus java-sdk test aborted !"
}
}
failure {
script {
echo "Milvus java-sdk test failed !"
}
}
}
}
}
}
apiVersion: v1
kind: Pod
metadata:
labels:
app: milvus
componet: testframework-java
spec:
containers:
- name: milvus-testframework-java
image: maven:3.6.2-jdk-8
command:
- cat
tty: true
<?xml version="1.0" encoding="UTF-8"?>
<module type="JAVA_MODULE" version="4" />
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>milvus</groupId>
<artifactId>MilvusSDkJavaTest</artifactId>
<version>1.0-SNAPSHOT</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>lib</outputDirectory>
<overWriteReleases>false</overWriteReleases>
<overWriteSnapshots>true</overWriteSnapshots>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<grpc.version>1.23.0</grpc.version><!-- CURRENT_GRPC_VERSION -->
<protobuf.version>3.9.0</protobuf.version>
<protoc.version>3.9.0</protoc.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<!-- <dependencyManagement>-->
<!-- <dependencies>-->
<!-- <dependency>-->
<!-- <groupId>io.grpc</groupId>-->
<!-- <artifactId>grpc-bom</artifactId>-->
<!-- <version>${grpc.version}</version>-->
<!-- <type>pom</type>-->
<!-- <scope>import</scope>-->
<!-- </dependency>-->
<!-- </dependencies>-->
<!-- </dependencyManagement>-->
<repositories>
<repository>
<id>oss.sonatype.org-snapshot</id>
<url>http://oss.sonatype.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.4</version>
</dependency>
<dependency>
<groupId>commons-cli</groupId>
<artifactId>commons-cli</artifactId>
<version>1.3</version>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>6.10</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.9</version>
</dependency>
<!-- <dependency>-->
<!-- <groupId>io.milvus</groupId>-->
<!-- <artifactId>milvus-sdk-java</artifactId>-->
<!-- <version>0.1.0</version>-->
<!-- </dependency>-->
<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>0.1.1-SNAPSHOT</version>
</dependency>
<!-- <dependency>-->
<!-- <groupId>io.grpc</groupId>-->
<!-- <artifactId>grpc-netty-shaded</artifactId>-->
<!-- <scope>runtime</scope>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>io.grpc</groupId>-->
<!-- <artifactId>grpc-protobuf</artifactId>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>io.grpc</groupId>-->
<!-- <artifactId>grpc-stub</artifactId>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>javax.annotation</groupId>-->
<!-- <artifactId>javax.annotation-api</artifactId>-->
<!-- <version>1.2</version>-->
<!-- <scope>provided</scope> &lt;!&ndash; not needed at runtime &ndash;&gt;-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>io.grpc</groupId>-->
<!-- <artifactId>grpc-testing</artifactId>-->
<!-- <scope>test</scope>-->
<!-- </dependency>-->
<!-- <dependency>-->
<!-- <groupId>com.google.protobuf</groupId>-->
<!-- <artifactId>protobuf-java-util</artifactId>-->
<!-- <version>${protobuf.version}</version>-->
<!-- </dependency>-->
</dependencies>
</project>
\ No newline at end of file
package com;
import io.milvus.client.*;
import org.apache.commons.cli.*;
import org.apache.commons.lang3.RandomStringUtils;
import org.testng.SkipException;
import org.testng.TestNG;
import org.testng.annotations.DataProvider;
import org.testng.xml.XmlClass;
import org.testng.xml.XmlSuite;
import org.testng.xml.XmlTest;
import java.util.ArrayList;
import java.util.List;
public class MainClass {
private static String host = "127.0.0.1";
private static String port = "19530";
public Integer index_file_size = 50;
public Integer dimension = 128;
public static void setHost(String host) {
MainClass.host = host;
}
public static void setPort(String port) {
MainClass.port = port;
}
@DataProvider(name="DefaultConnectArgs")
public static Object[][] defaultConnectArgs(){
return new Object[][]{{host, port}};
}
@DataProvider(name="ConnectInstance")
public Object[][] connectInstance(){
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
String tableName = RandomStringUtils.randomAlphabetic(10);
return new Object[][]{{client, tableName}};
}
@DataProvider(name="DisConnectInstance")
public Object[][] disConnectInstance(){
// Generate connection instance
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
try {
client.disconnect();
} catch (InterruptedException e) {
e.printStackTrace();
}
String tableName = RandomStringUtils.randomAlphabetic(10);
return new Object[][]{{client, tableName}};
}
@DataProvider(name="Table")
public Object[][] provideTable(){
Object[][] tables = new Object[2][2];
MetricType metricTypes[] = { MetricType.L2, MetricType.IP };
for (Integer i = 0; i < metricTypes.length; ++i) {
String tableName = metricTypes[i].toString()+"_"+RandomStringUtils.randomAlphabetic(10);
// Generate connection instance
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(metricTypes[i])
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
Response res = client.createTable(tableSchemaParam);
if (!res.ok()) {
System.out.println(res.getMessage());
throw new SkipException("Table created failed");
}
tables[i] = new Object[]{client, tableName};
}
return tables;
}
public static void main(String[] args) {
CommandLineParser parser = new DefaultParser();
Options options = new Options();
options.addOption("h", "host", true, "milvus-server hostname/ip");
options.addOption("p", "port", true, "milvus-server port");
try {
CommandLine cmd = parser.parse(options, args);
String host = cmd.getOptionValue("host");
if (host != null) {
setHost(host);
}
String port = cmd.getOptionValue("port");
if (port != null) {
setPort(port);
}
System.out.println("Host: "+host+", Port: "+port);
}
catch(ParseException exp) {
System.err.println("Parsing failed. Reason: " + exp.getMessage() );
}
// TestListenerAdapter tla = new TestListenerAdapter();
// TestNG testng = new TestNG();
// testng.setTestClasses(new Class[] { TestPing.class });
// testng.setTestClasses(new Class[] { TestConnect.class });
// testng.addListener(tla);
// testng.run();
XmlSuite suite = new XmlSuite();
suite.setName("TmpSuite");
XmlTest test = new XmlTest(suite);
test.setName("TmpTest");
List<XmlClass> classes = new ArrayList<XmlClass>();
classes.add(new XmlClass("com.TestPing"));
classes.add(new XmlClass("com.TestAddVectors"));
classes.add(new XmlClass("com.TestConnect"));
classes.add(new XmlClass("com.TestDeleteVectors"));
classes.add(new XmlClass("com.TestIndex"));
classes.add(new XmlClass("com.TestSearchVectors"));
classes.add(new XmlClass("com.TestTable"));
classes.add(new XmlClass("com.TestTableCount"));
test.setXmlClasses(classes) ;
List<XmlSuite> suites = new ArrayList<XmlSuite>();
suites.add(suite);
TestNG tng = new TestNG();
tng.setXmlSuites(suites);
tng.run();
}
}
package com;
import io.milvus.client.InsertParam;
import io.milvus.client.InsertResponse;
import io.milvus.client.MilvusClient;
import io.milvus.client.TableParam;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class TestAddVectors {
int dimension = 128;
public List<List<Float>> gen_vectors(Integer nb) {
List<List<Float>> xb = new LinkedList<>();
Random random = new Random();
for (int i = 0; i < nb; ++i) {
LinkedList<Float> vector = new LinkedList<>();
for (int j = 0; j < dimension; j++) {
vector.add(random.nextFloat());
}
xb.add(vector);
}
return xb;
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
String tableNameNew = tableName + "_";
InsertParam insertParam = new InsertParam.Builder(tableNameNew, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_add_vectors_without_connect(MilvusClient client, String tableName) throws InterruptedException {
int nb = 100;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
Thread.currentThread().sleep(1000);
// Assert table row count
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), nb);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_timeout(MilvusClient client, String tableName) throws InterruptedException {
int nb = 200000;
List<List<Float>> vectors = gen_vectors(nb);
System.out.println(new Date());
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).withTimeout(1).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_big_data(MilvusClient client, String tableName) throws InterruptedException {
int nb = 500000;
List<List<Float>> vectors = gen_vectors(nb);
System.out.println(new Date());
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_with_ids(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
// Add vectors with ids
List<Long> vectorIds;
vectorIds = Stream.iterate(0L, n -> n)
.limit(nb)
.collect(Collectors.toList());
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).withVectorIds(vectorIds).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
Thread.currentThread().sleep(1000);
// Assert table row count
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), nb);
}
// TODO: MS-628
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_with_invalid_ids(MilvusClient client, String tableName) {
int nb = 10;
List<List<Float>> vectors = gen_vectors(nb);
// Add vectors with ids
List<Long> vectorIds;
vectorIds = Stream.iterate(0L, n -> n)
.limit(nb+1)
.collect(Collectors.toList());
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).withVectorIds(vectorIds).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_with_invalid_dimension(MilvusClient client, String tableName) {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
vectors.get(0).add((float) 0);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_with_invalid_vectors(MilvusClient client, String tableName) {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
vectors.set(0, new ArrayList<>());
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_repeatably(MilvusClient client, String tableName) throws InterruptedException {
int nb = 100000;
int loops = 10;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = null;
for (int i = 0; i < loops; ++i ) {
long startTime = System.currentTimeMillis();
res = client.insert(insertParam);
long endTime = System.currentTimeMillis();
System.out.println("Total execution time: " + (endTime-startTime) + "ms");
}
Thread.currentThread().sleep(1000);
// Assert table row count
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), nb * loops);
}
}
package com;
import io.milvus.client.ConnectParam;
import io.milvus.client.MilvusClient;
import io.milvus.client.MilvusGrpcClient;
import io.milvus.client.Response;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
public class TestConnect {
@Test(dataProvider = "DefaultConnectArgs", dataProviderClass = MainClass.class)
public void test_connect(String host, String port){
System.out.println("Host: "+host+", Port: "+port);
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
Response res = client.connect(connectParam);
assert(res.ok());
assert(client.connected());
}
@Test(dataProvider = "DefaultConnectArgs", dataProviderClass = MainClass.class)
public void test_connect_repeat(String host, String port){
MilvusGrpcClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
Response res = client.connect(connectParam);
assert(!res.ok());
assert(client.connected());
}
@Test(dataProvider="InvalidConnectArgs")
public void test_connect_invalid_connect_args(String ip, String port) throws InterruptedException {
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(ip)
.withPort(port)
.build();
client.connect(connectParam);
assert(!client.connected());
}
// TODO: MS-615
@DataProvider(name="InvalidConnectArgs")
public Object[][] generate_invalid_connect_args() {
String port = "19530";
String ip = "";
return new Object[][]{
{"1.1.1.1", port},
{"255.255.0.0", port},
{"1.2.2", port},
{"中文", port},
{"www.baidu.com", "100000"},
{"127.0.0.1", "100000"},
{"www.baidu.com", "80"},
};
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_disconnect(MilvusClient client, String tableName){
assert(!client.connected());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_disconnect_repeatably(MilvusClient client, String tableNam){
Response res = null;
try {
res = client.disconnect();
} catch (InterruptedException e) {
e.printStackTrace();
}
assert(res.ok());
assert(!client.connected());
}
}
package com;
import io.milvus.client.*;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.*;
public class TestDeleteVectors {
int index_file_size = 50;
int dimension = 128;
public List<List<Float>> gen_vectors(Integer nb) {
List<List<Float>> xb = new LinkedList<>();
Random random = new Random();
for (int i = 0; i < nb; ++i) {
LinkedList<Float> vector = new LinkedList<>();
for (int j = 0; j < dimension; j++) {
vector.add(random.nextFloat());
}
xb.add(vector);
}
return xb;
}
public static Date getDeltaDate(int delta) {
Date today = new Date();
Calendar c = Calendar.getInstance();
c.setTime(today);
c.add(Calendar.DAY_OF_MONTH, delta);
return c.getTime();
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
// Add vectors
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
Thread.sleep(1000);
DateRange dateRange = new DateRange(getDeltaDate(-1), getDeltaDate(1));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(res_delete.ok());
Thread.sleep(1000);
// Assert table row count
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), 0);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
String tableNameNew = tableName + "_";
DateRange dateRange = new DateRange(getDeltaDate(-1), getDeltaDate(1));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableNameNew).build();
Response res_delete = client.deleteByRange(param);
assert(!res_delete.ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_delete_vectors_without_connect(MilvusClient client, String tableName) throws InterruptedException {
DateRange dateRange = new DateRange(getDeltaDate(-1), getDeltaDate(1));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(!res_delete.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors_table_empty(MilvusClient client, String tableName) throws InterruptedException {
DateRange dateRange = new DateRange(getDeltaDate(-1), getDeltaDate(1));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(res_delete.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors_invalid_date_range(MilvusClient client, String tableName) throws InterruptedException {
int nb = 100;
List<List<Float>> vectors = gen_vectors(nb);
// Add vectors
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
Thread.sleep(1000);
DateRange dateRange = new DateRange(getDeltaDate(1), getDeltaDate(0));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(!res_delete.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors_invalid_date_range_1(MilvusClient client, String tableName) throws InterruptedException {
int nb = 100;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
DateRange dateRange = new DateRange(getDeltaDate(2), getDeltaDate(-1));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(!res_delete.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_delete_vectors_no_result(MilvusClient client, String tableName) throws InterruptedException {
int nb = 100;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
InsertResponse res = client.insert(insertParam);
assert(res.getResponse().ok());
Thread.sleep(1000);
DateRange dateRange = new DateRange(getDeltaDate(-3), getDeltaDate(-2));
DeleteByRangeParam param = new DeleteByRangeParam.Builder(dateRange, tableName).build();
Response res_delete = client.deleteByRange(param);
assert(res_delete.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), nb);
}
}
package com;
import io.milvus.client.*;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.Date;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
public class TestIndex {
int index_file_size = 10;
int dimension = 128;
int n_list = 1024;
int default_n_list = 16384;
int nb = 100000;
IndexType indexType = IndexType.IVF_SQ8;
IndexType defaultIndexType = IndexType.FLAT;
public List<List<Float>> gen_vectors(Integer nb) {
List<List<Float>> xb = new LinkedList<>();
Random random = new Random();
for (int i = 0; i < nb; ++i) {
LinkedList<Float> vector = new LinkedList<>();
for (int j = 0; j < dimension; j++) {
vector.add(random.nextFloat());
}
xb.add(vector);
}
return xb;
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_repeatably(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), n_list);
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_FLAT(MilvusClient client, String tableName) throws InterruptedException {
IndexType indexType = IndexType.FLAT;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_FLAT_timeout(MilvusClient client, String tableName) throws InterruptedException {
int nb = 500000;
IndexType indexType = IndexType.IVF_SQ8;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
System.out.println(new Date());
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).withTimeout(1).build();
Response res_create = client.createIndex(createIndexParam);
assert(!res_create.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_IVFLAT(MilvusClient client, String tableName) throws InterruptedException {
IndexType indexType = IndexType.IVFLAT;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_IVFSQ8(MilvusClient client, String tableName) throws InterruptedException {
IndexType indexType = IndexType.IVF_SQ8;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_IVFSQ8H(MilvusClient client, String tableName) throws InterruptedException {
IndexType indexType = IndexType.IVF_SQ8_H;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_with_no_vector(MilvusClient client, String tableName) {
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
String tableNameNew = tableName + "_";
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableNameNew).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(!res_create.ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_create_index_without_connect(MilvusClient client, String tableName) throws InterruptedException {
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(!res_create.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_create_index_invalid_n_list(MilvusClient client, String tableName) throws InterruptedException {
int n_list = 0;
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(!res_create.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_describe_index(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), n_list);
Assert.assertEquals(index1.getIndexType(), indexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_alter_index(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(indexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
// Create another index
IndexType indexTypeNew = IndexType.IVFLAT;
int n_list_new = n_list + 1;
Index index_new = new Index.Builder().withIndexType(indexTypeNew)
.withNList(n_list_new)
.build();
CreateIndexParam createIndexParamNew = new CreateIndexParam.Builder(tableName).withIndex(index_new).build();
Response res_create_new = client.createIndex(createIndexParamNew);
assert(res_create_new.ok());
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res_create.ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), n_list_new);
Assert.assertEquals(index1.getIndexType(), indexTypeNew);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_describe_index_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
String tableNameNew = tableName + "_";
TableParam tableParam = new TableParam.Builder(tableNameNew).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_describe_index_without_connect(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_index(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(defaultIndexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res_drop = client.dropIndex(tableParam);
assert(res_drop.ok());
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), default_n_list);
Assert.assertEquals(index1.getIndexType(), defaultIndexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_index_repeatably(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(defaultIndexType)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
Response res_create = client.createIndex(createIndexParam);
assert(res_create.ok());
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res_drop = client.dropIndex(tableParam);
res_drop = client.dropIndex(tableParam);
assert(res_drop.ok());
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), default_n_list);
Assert.assertEquals(index1.getIndexType(), defaultIndexType);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_index_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
String tableNameNew = tableName + "_";
TableParam tableParam = new TableParam.Builder(tableNameNew).build();
Response res_drop = client.dropIndex(tableParam);
assert(!res_drop.ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_drop_index_without_connect(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res_drop = client.dropIndex(tableParam);
assert(!res_drop.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_index_no_index_created(MilvusClient client, String tableName) throws InterruptedException {
List<List<Float>> vectors = gen_vectors(nb);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res_drop = client.dropIndex(tableParam);
assert(res_drop.ok());
DescribeIndexResponse res = client.describeIndex(tableParam);
assert(res.getResponse().ok());
Index index1 = res.getIndex().get();
Assert.assertEquals(index1.getNList(), default_n_list);
Assert.assertEquals(index1.getIndexType(), defaultIndexType);
}
}
package com;
import io.milvus.client.*;
import org.apache.commons.lang3.RandomStringUtils;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
public class TestMix {
private int dimension = 128;
private int nb = 100000;
int n_list = 8192;
int n_probe = 20;
int top_k = 10;
double epsilon = 0.001;
int index_file_size = 20;
public List<Float> normalize(List<Float> w2v){
float squareSum = w2v.stream().map(x -> x * x).reduce((float) 0, Float::sum);
final float norm = (float) Math.sqrt(squareSum);
w2v = w2v.stream().map(x -> x / norm).collect(Collectors.toList());
return w2v;
}
public List<List<Float>> gen_vectors(int nb, boolean norm) {
List<List<Float>> xb = new ArrayList<>();
Random random = new Random();
for (int i = 0; i < nb; ++i) {
List<Float> vector = new ArrayList<>();
for (int j = 0; j < dimension; j++) {
vector.add(random.nextFloat());
}
if (norm == true) {
vector = normalize(vector);
}
xb.add(vector);
}
return xb;
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_search_vectors_threads(MilvusClient client, String tableName) throws InterruptedException {
int thread_num = 10;
int nq = 5;
List<List<Float>> vectors = gen_vectors(nb, false);
List<List<Float>> queryVectors = vectors.subList(0,nq);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
Index index = new Index.Builder().withIndexType(IndexType.IVF_SQ8)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
client.createIndex(createIndexParam);
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
SearchParam searchParam = new SearchParam.Builder(tableName, queryVectors).withNProbe(n_probe).withTopK(top_k).build();
SearchResponse res_search = client.search(searchParam);
assert (res_search.getResponse().ok());
});
}
executor.awaitQuiescence(100, TimeUnit.SECONDS);
executor.shutdown();
}
@Test(dataProvider = "DefaultConnectArgs", dataProviderClass = MainClass.class)
public void test_connect_threads(String host, String port) throws InterruptedException {
int thread_num = 100;
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
assert(client.connected());
try {
client.disconnect();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
executor.awaitQuiescence(100, TimeUnit.SECONDS);
executor.shutdown();
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_vectors_threads(MilvusClient client, String tableName) throws InterruptedException {
int thread_num = 10;
List<List<Float>> vectors = gen_vectors(nb,false);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
InsertResponse res_insert = client.insert(insertParam);
assert (res_insert.getResponse().ok());
});
}
executor.awaitQuiescence(100, TimeUnit.SECONDS);
executor.shutdown();
Thread.sleep(2000);
TableParam tableParam = new TableParam.Builder(tableName).build();
GetTableRowCountResponse getTableRowCountResponse = client.getTableRowCount(tableParam);
Assert.assertEquals(getTableRowCountResponse.getTableRowCount(), thread_num * nb);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_index_vectors_threads(MilvusClient client, String tableName) throws InterruptedException {
int thread_num = 50;
List<List<Float>> vectors = gen_vectors(nb,false);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
InsertResponse res_insert = client.insert(insertParam);
Index index = new Index.Builder().withIndexType(IndexType.IVF_SQ8)
.withNList(n_list)
.build();
CreateIndexParam createIndexParam = new CreateIndexParam.Builder(tableName).withIndex(index).build();
client.createIndex(createIndexParam);
assert (res_insert.getResponse().ok());
});
}
executor.awaitQuiescence(300, TimeUnit.SECONDS);
executor.shutdown();
Thread.sleep(2000);
TableParam tableParam = new TableParam.Builder(tableName).build();
GetTableRowCountResponse getTableRowCountResponse = client.getTableRowCount(tableParam);
Assert.assertEquals(getTableRowCountResponse.getTableRowCount(), thread_num * nb);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_add_search_vectors_threads(MilvusClient client, String tableName) throws InterruptedException {
int thread_num = 50;
int nq = 5;
List<List<Float>> vectors = gen_vectors(nb, true);
List<List<Float>> queryVectors = vectors.subList(0,nq);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
InsertResponse res_insert = client.insert(insertParam);
assert (res_insert.getResponse().ok());
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
SearchParam searchParam = new SearchParam.Builder(tableName, queryVectors).withNProbe(n_probe).withTopK(top_k).build();
SearchResponse res_search = client.search(searchParam);
assert (res_search.getResponse().ok());
List<List<SearchResponse.QueryResult>> res = client.search(searchParam).getQueryResultsList();
double distance = res.get(0).get(0).getDistance();
if (tableName.startsWith("L2")) {
Assert.assertEquals(distance, 0.0, epsilon);
}else if (tableName.startsWith("IP")) {
Assert.assertEquals(distance, 1.0, epsilon);
}
});
}
executor.awaitQuiescence(300, TimeUnit.SECONDS);
executor.shutdown();
Thread.sleep(2000);
TableParam tableParam = new TableParam.Builder(tableName).build();
GetTableRowCountResponse getTableRowCountResponse = client.getTableRowCount(tableParam);
Assert.assertEquals(getTableRowCountResponse.getTableRowCount(), thread_num * nb);
}
@Test(dataProvider = "DefaultConnectArgs", dataProviderClass = MainClass.class)
public void test_create_insert_delete_threads(String host, String port) throws InterruptedException {
int thread_num = 100;
List<List<Float>> vectors = gen_vectors(nb,false);
ForkJoinPool executor = new ForkJoinPool();
for (int i = 0; i < thread_num; i++) {
executor.execute(
() -> {
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
String tableName = RandomStringUtils.randomAlphabetic(10);
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.IP)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
client.createTable(tableSchemaParam);
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();
client.insert(insertParam);
TableParam tableParam = new TableParam.Builder(tableName).build();
Response response = client.dropTable(tableParam);
Assert.assertTrue(response.ok());
try {
client.disconnect();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
executor.awaitQuiescence(100, TimeUnit.SECONDS);
executor.shutdown();
}
}
package com;
import io.milvus.client.ConnectParam;
import io.milvus.client.MilvusClient;
import io.milvus.client.MilvusGrpcClient;
import io.milvus.client.Response;
import org.testng.annotations.Test;
public class TestPing {
@Test(dataProvider = "DefaultConnectArgs", dataProviderClass = MainClass.class)
public void test_server_status(String host, String port){
System.out.println("Host: "+host+", Port: "+port);
MilvusClient client = new MilvusGrpcClient();
ConnectParam connectParam = new ConnectParam.Builder()
.withHost(host)
.withPort(port)
.build();
client.connect(connectParam);
Response res = client.serverStatus();
assert (res.ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_server_status_without_connected(MilvusGrpcClient client, String tableName){
Response res = client.serverStatus();
assert (!res.ok());
}
}
\ No newline at end of file
package com;
import io.milvus.client.*;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.List;
public class TestTable {
int index_file_size = 50;
int dimension = 128;
@Test(dataProvider = "ConnectInstance", dataProviderClass = MainClass.class)
public void test_create_table(MilvusClient client, String tableName){
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
Response res = client.createTable(tableSchemaParam);
assert(res.ok());
Assert.assertEquals(res.ok(), true);
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_create_table_disconnect(MilvusClient client, String tableName){
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
Response res = client.createTable(tableSchemaParam);
assert(!res.ok());
}
@Test(dataProvider = "ConnectInstance", dataProviderClass = MainClass.class)
public void test_create_table_repeatably(MilvusClient client, String tableName){
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
Response res = client.createTable(tableSchemaParam);
Assert.assertEquals(res.ok(), true);
Response res_new = client.createTable(tableSchemaParam);
Assert.assertEquals(res_new.ok(), false);
}
@Test(dataProvider = "ConnectInstance", dataProviderClass = MainClass.class)
public void test_create_table_wrong_params(MilvusClient client, String tableName){
Integer dimension = 0;
TableSchema tableSchema = new TableSchema.Builder(tableName, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
Response res = client.createTable(tableSchemaParam);
System.out.println(res.toString());
Assert.assertEquals(res.ok(), false);
}
@Test(dataProvider = "ConnectInstance", dataProviderClass = MainClass.class)
public void test_show_tables(MilvusClient client, String tableName){
Integer tableNum = 10;
ShowTablesResponse res = null;
for (int i = 0; i < tableNum; ++i) {
String tableNameNew = tableName+"_"+Integer.toString(i);
TableSchema tableSchema = new TableSchema.Builder(tableNameNew, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
client.createTable(tableSchemaParam);
List<String> tableNames = client.showTables().getTableNames();
Assert.assertTrue(tableNames.contains(tableNameNew));
}
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_show_tables_without_connect(MilvusClient client, String tableName){
ShowTablesResponse res = client.showTables();
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_table(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res = client.dropTable(tableParam);
assert(res.ok());
Thread.currentThread().sleep(1000);
List<String> tableNames = client.showTables().getTableNames();
Assert.assertFalse(tableNames.contains(tableName));
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_drop_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName+"_").build();
Response res = client.dropTable(tableParam);
assert(!res.ok());
List<String> tableNames = client.showTables().getTableNames();
Assert.assertTrue(tableNames.contains(tableName));
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_drop_table_without_connect(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
Response res = client.dropTable(tableParam);
assert(!res.ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_describe_table(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeTableResponse res = client.describeTable(tableParam);
assert(res.getResponse().ok());
TableSchema tableSchema = res.getTableSchema().get();
Assert.assertEquals(tableSchema.getDimension(), dimension);
Assert.assertEquals(tableSchema.getTableName(), tableName);
Assert.assertEquals(tableSchema.getIndexFileSize(), index_file_size);
Assert.assertEquals(tableSchema.getMetricType().name(), tableName.substring(0,2));
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_describe_table_without_connect(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
DescribeTableResponse res = client.describeTable(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_has_table_not_existed(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName+"_").build();
HasTableResponse res = client.hasTable(tableParam);
assert(res.getResponse().ok());
Assert.assertFalse(res.hasTable());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_has_table_without_connect(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
HasTableResponse res = client.hasTable(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_has_table(MilvusClient client, String tableName) throws InterruptedException {
TableParam tableParam = new TableParam.Builder(tableName).build();
HasTableResponse res = client.hasTable(tableParam);
assert(res.getResponse().ok());
Assert.assertTrue(res.hasTable());
}
}
package com;
import io.milvus.client.*;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class TestTableCount {
int index_file_size = 50;
int dimension = 128;
public List<List<Float>> gen_vectors(Integer nb) {
List<List<Float>> xb = new ArrayList<>();
Random random = new Random();
for (int i = 0; i < nb; ++i) {
ArrayList<Float> vector = new ArrayList<>();
for (int j = 0; j < dimension; j++) {
vector.add(random.nextFloat());
}
xb.add(vector);
}
return xb;
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_table_count_no_vectors(MilvusClient client, String tableName) {
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), 0);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_table_count_table_not_existed(MilvusClient client, String tableName) {
TableParam tableParam = new TableParam.Builder(tableName+"_").build();
GetTableRowCountResponse res = client.getTableRowCount(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "DisConnectInstance", dataProviderClass = MainClass.class)
public void test_table_count_without_connect(MilvusClient client, String tableName) {
TableParam tableParam = new TableParam.Builder(tableName+"_").build();
GetTableRowCountResponse res = client.getTableRowCount(tableParam);
assert(!res.getResponse().ok());
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_table_count(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
// Add vectors
InsertParam insertParam = new InsertParam.Builder(tableName, vectors).build();;
client.insert(insertParam);
Thread.currentThread().sleep(1000);
TableParam tableParam = new TableParam.Builder(tableName).build();
Assert.assertEquals(client.getTableRowCount(tableParam).getTableRowCount(), nb);
}
@Test(dataProvider = "Table", dataProviderClass = MainClass.class)
public void test_table_count_multi_tables(MilvusClient client, String tableName) throws InterruptedException {
int nb = 10000;
List<List<Float>> vectors = gen_vectors(nb);
Integer tableNum = 10;
GetTableRowCountResponse res = null;
for (int i = 0; i < tableNum; ++i) {
String tableNameNew = tableName + "_" + Integer.toString(i);
TableSchema tableSchema = new TableSchema.Builder(tableNameNew, dimension)
.withIndexFileSize(index_file_size)
.withMetricType(MetricType.L2)
.build();
TableSchemaParam tableSchemaParam = new TableSchemaParam.Builder(tableSchema).build();
client.createTable(tableSchemaParam);
// Add vectors
InsertParam insertParam = new InsertParam.Builder(tableNameNew, vectors).build();
client.insert(insertParam);
}
Thread.currentThread().sleep(1000);
for (int i = 0; i < tableNum; ++i) {
String tableNameNew = tableName + "_" + Integer.toString(i);
TableParam tableParam = new TableParam.Builder(tableNameNew).build();
res = client.getTableRowCount(tableParam);
Assert.assertEquals(res.getTableRowCount(), nb);
}
}
}
<suite name="Test-class Suite">
<test name="Test-class test" >
<classes>
<class name="com.TestConnect" />
<class name="com.TestMix" />
</classes>
</test>
</suite>
\ No newline at end of file
import pdb
import random
import logging
import json
import time, datetime
from multiprocessing import Process
import numpy
import sklearn.preprocessing
from milvus import Milvus, IndexType, MetricType
logger = logging.getLogger("milvus_ann_acc.client")
SERVER_HOST_DEFAULT = "127.0.0.1"
SERVER_PORT_DEFAULT = 19530
def time_wrapper(func):
"""
This decorator prints the execution time for the decorated function.
"""
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
logger.info("Milvus {} run in {}s".format(func.__name__, round(end - start, 2)))
return result
return wrapper
class MilvusClient(object):
def __init__(self, table_name=None, ip=None, port=None):
self._milvus = Milvus()
self._table_name = table_name
try:
if not ip:
self._milvus.connect(
host = SERVER_HOST_DEFAULT,
port = SERVER_PORT_DEFAULT)
else:
self._milvus.connect(
host = ip,
port = port)
except Exception as e:
raise e
def __str__(self):
return 'Milvus table %s' % self._table_name
def check_status(self, status):
if not status.OK():
logger.error(status.message)
raise Exception("Status not ok")
def create_table(self, table_name, dimension, index_file_size, metric_type):
if not self._table_name:
self._table_name = table_name
if metric_type == "l2":
metric_type = MetricType.L2
elif metric_type == "ip":
metric_type = MetricType.IP
else:
logger.error("Not supported metric_type: %s" % metric_type)
self._metric_type = metric_type
create_param = {'table_name': table_name,
'dimension': dimension,
'index_file_size': index_file_size,
"metric_type": metric_type}
status = self._milvus.create_table(create_param)
self.check_status(status)
@time_wrapper
def insert(self, X, ids):
if self._metric_type == MetricType.IP:
logger.info("Set normalize for metric_type: Inner Product")
X = sklearn.preprocessing.normalize(X, axis=1, norm='l2')
X = X.astype(numpy.float32)
status, result = self._milvus.add_vectors(self._table_name, X.tolist(), ids=ids)
self.check_status(status)
return status, result
@time_wrapper
def create_index(self, index_type, nlist):
if index_type == "flat":
index_type = IndexType.FLAT
elif index_type == "ivf_flat":
index_type = IndexType.IVFLAT
elif index_type == "ivf_sq8":
index_type = IndexType.IVF_SQ8
elif index_type == "ivf_sq8h":
index_type = IndexType.IVF_SQ8H
elif index_type == "mix_nsg":
index_type = IndexType.MIX_NSG
index_params = {
"index_type": index_type,
"nlist": nlist,
}
logger.info("Building index start, table_name: %s, index_params: %s" % (self._table_name, json.dumps(index_params)))
status = self._milvus.create_index(self._table_name, index=index_params, timeout=6*3600)
self.check_status(status)
def describe_index(self):
return self._milvus.describe_index(self._table_name)
def drop_index(self):
logger.info("Drop index: %s" % self._table_name)
return self._milvus.drop_index(self._table_name)
@time_wrapper
def query(self, X, top_k, nprobe):
if self._metric_type == MetricType.IP:
logger.info("Set normalize for metric_type: Inner Product")
X = sklearn.preprocessing.normalize(X, axis=1, norm='l2')
X = X.astype(numpy.float32)
status, results = self._milvus.search_vectors(self._table_name, top_k, nprobe, X.tolist())
self.check_status(status)
# logger.info(results[0])
ids = []
for result in results:
tmp_ids = []
for item in result:
tmp_ids.append(item.id)
ids.append(tmp_ids)
return ids
def count(self):
return self._milvus.get_table_row_count(self._table_name)[1]
def delete(self, timeout=60):
logger.info("Start delete table: %s" % self._table_name)
self._milvus.delete_table(self._table_name)
i = 0
while i < timeout:
if self.count():
time.sleep(1)
i = i + 1
else:
break
if i >= timeout:
logger.error("Delete table timeout")
def describe(self):
return self._milvus.describe_table(self._table_name)
def exists_table(self):
return self._milvus.has_table(self._table_name)
@time_wrapper
def preload_table(self):
return self._milvus.preload_table(self._table_name)
datasets:
sift-128-euclidean:
cpu_cache_size: 16
gpu_cache_size: 5
index_file_size: [1024]
nytimes-16-angular:
cpu_cache_size: 16
gpu_cache_size: 5
index_file_size: [1024]
index:
index_types: ['flat', 'ivf_flat', 'ivf_sq8']
nlists: [8092, 16384]
search:
nprobes: [1, 8, 32]
top_ks: [10]
import argparse
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--dataset',
metavar='NAME',
help='the dataset to load training points from',
default='glove-100-angular',
choices=DATASETS.keys())
parser.add_argument(
"-k", "--count",
default=10,
type=positive_int,
help="the number of near neighbours to search for")
parser.add_argument(
'--definitions',
metavar='FILE',
help='load algorithm definitions from FILE',
default='algos.yaml')
parser.add_argument(
'--image-tag',
default=None,
help='pull image first')
\ No newline at end of file
import os
import pdb
import time
import random
import sys
import h5py
import numpy
import logging
from logging import handlers
from client import MilvusClient
LOG_FOLDER = "logs"
logger = logging.getLogger("milvus_ann_acc")
formatter = logging.Formatter('[%(asctime)s] [%(levelname)-4s] [%(pathname)s:%(lineno)d] %(message)s')
if not os.path.exists(LOG_FOLDER):
os.system('mkdir -p %s' % LOG_FOLDER)
fileTimeHandler = handlers.TimedRotatingFileHandler(os.path.join(LOG_FOLDER, 'acc'), "D", 1, 10)
fileTimeHandler.suffix = "%Y%m%d.log"
fileTimeHandler.setFormatter(formatter)
logging.basicConfig(level=logging.DEBUG)
fileTimeHandler.setFormatter(formatter)
logger.addHandler(fileTimeHandler)
def get_dataset_fn(dataset_name):
file_path = "/test/milvus/ann_hdf5/"
if not os.path.exists(file_path):
raise Exception("%s not exists" % file_path)
return os.path.join(file_path, '%s.hdf5' % dataset_name)
def get_dataset(dataset_name):
hdf5_fn = get_dataset_fn(dataset_name)
hdf5_f = h5py.File(hdf5_fn)
return hdf5_f
def parse_dataset_name(dataset_name):
data_type = dataset_name.split("-")[0]
dimension = int(dataset_name.split("-")[1])
metric = dataset_name.split("-")[-1]
# metric = dataset.attrs['distance']
# dimension = len(dataset["train"][0])
if metric == "euclidean":
metric_type = "l2"
elif metric == "angular":
metric_type = "ip"
return ("ann"+data_type, dimension, metric_type)
def get_table_name(dataset_name, index_file_size):
data_type, dimension, metric_type = parse_dataset_name(dataset_name)
dataset = get_dataset(dataset_name)
table_size = len(dataset["train"])
table_size = str(table_size // 1000000)+"m"
table_name = data_type+'_'+table_size+'_'+str(index_file_size)+'_'+str(dimension)+'_'+metric_type
return table_name
def main(dataset_name, index_file_size, nlist=16384, force=False):
top_k = 10
nprobes = [32, 128]
dataset = get_dataset(dataset_name)
table_name = get_table_name(dataset_name, index_file_size)
m = MilvusClient(table_name)
if m.exists_table():
if force is True:
logger.info("Re-create table: %s" % table_name)
m.delete()
time.sleep(10)
else:
logger.info("Table name: %s existed" % table_name)
return
data_type, dimension, metric_type = parse_dataset_name(dataset_name)
m.create_table(table_name, dimension, index_file_size, metric_type)
print(m.describe())
vectors = numpy.array(dataset["train"])
query_vectors = numpy.array(dataset["test"])
# m.insert(vectors)
interval = 100000
loops = len(vectors) // interval + 1
for i in range(loops):
start = i*interval
end = min((i+1)*interval, len(vectors))
tmp_vectors = vectors[start:end]
if start < end:
m.insert(tmp_vectors, ids=[i for i in range(start, end)])
time.sleep(60)
print(m.count())
for index_type in ["ivf_flat", "ivf_sq8", "ivf_sq8h"]:
m.create_index(index_type, nlist)
print(m.describe_index())
if m.count() != len(vectors):
return
m.preload_table()
true_ids = numpy.array(dataset["neighbors"])
for nprobe in nprobes:
print("nprobe: %s" % nprobe)
sum_radio = 0.0; avg_radio = 0.0
result_ids = m.query(query_vectors, top_k, nprobe)
# print(result_ids[:10])
for index, result_item in enumerate(result_ids):
if len(set(true_ids[index][:top_k])) != len(set(result_item)):
logger.info("Error happened")
# logger.info(query_vectors[index])
# logger.info(true_ids[index][:top_k], result_item)
tmp = set(true_ids[index][:top_k]).intersection(set(result_item))
sum_radio = sum_radio + (len(tmp) / top_k)
avg_radio = round(sum_radio / len(result_ids), 4)
logger.info(avg_radio)
m.drop_index()
if __name__ == "__main__":
print("glove-25-angular")
# main("sift-128-euclidean", 1024, force=True)
for index_file_size in [50, 1024]:
print("Index file size: %d" % index_file_size)
main("glove-25-angular", index_file_size, force=True)
print("sift-128-euclidean")
for index_file_size in [50, 1024]:
print("Index file size: %d" % index_file_size)
main("sift-128-euclidean", index_file_size, force=True)
# m = MilvusClient()
\ No newline at end of file
random_data
benchmark_logs/
db/
logs/
*idmap*.txt
__pycache__/
venv
.idea
\ No newline at end of file
# Quick start
## 运行
### 运行示例:
`python3 main.py --image=registry.zilliz.com/milvus/engine:branch-0.3.1-release --run-count=2 --run-type=performance`
### 运行参数:
--image: 容器模式,传入镜像名称,如传入,则运行测试时,会先进行pull image,基于image生成milvus server容器
--local: 与image参数互斥,本地模式,连接使用本地启动的milvus server进行测试
--run-count: 重复运行次数
--suites: 测试集配置文件,默认使用suites.yaml
--run-type: 测试类型,包括性能--performance、准确性测试--accuracy以及稳定性--stability
### 测试集配置文件:
`operations:
insert:
​ [
​ {"table.index_type": "ivf_flat", "server.index_building_threshold": 300, "table.size": 2000000, "table.ni": 100000, "table.dim": 512},
​ ]
build: []
query:
​ [
​ {"dataset": "ip_ivfsq8_1000", "top_ks": [10], "nqs": [10, 100], "server.nprobe": 1, "server.use_blas_threshold": 800},
​ {"dataset": "ip_ivfsq8_1000", "top_ks": [10], "nqs": [10, 100], "server.nprobe": 10, "server.use_blas_threshold": 20},
​ ]`
## 测试结果:
性能:
`INFO:milvus_benchmark.runner:Start warm query, query params: top-k: 1, nq: 1
INFO:milvus_benchmark.client:query run in 19.19s
INFO:milvus_benchmark.runner:Start query, query params: top-k: 64, nq: 10, actually length of vectors: 10
INFO:milvus_benchmark.runner:Start run query, run 1 of 1
INFO:milvus_benchmark.client:query run in 0.2s
INFO:milvus_benchmark.runner:Avarage query time: 0.20
INFO:milvus_benchmark.runner:[[0.2]]`
**│ 10 │ 0.2 │**
准确率:
`INFO:milvus_benchmark.runner:Avarage accuracy: 1.0`
\ No newline at end of file
import pdb
import random
import logging
import json
import sys
import time, datetime
from multiprocessing import Process
from milvus import Milvus, IndexType, MetricType
logger = logging.getLogger("milvus_benchmark.client")
SERVER_HOST_DEFAULT = "127.0.0.1"
SERVER_PORT_DEFAULT = 19530
def time_wrapper(func):
"""
This decorator prints the execution time for the decorated function.
"""
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
logger.info("Milvus {} run in {}s".format(func.__name__, round(end - start, 2)))
return result
return wrapper
class MilvusClient(object):
def __init__(self, table_name=None, ip=None, port=None):
self._milvus = Milvus()
self._table_name = table_name
try:
if not ip:
self._milvus.connect(
host = SERVER_HOST_DEFAULT,
port = SERVER_PORT_DEFAULT)
else:
self._milvus.connect(
host = ip,
port = port)
except Exception as e:
raise e
def __str__(self):
return 'Milvus table %s' % self._table_name
def check_status(self, status):
if not status.OK():
logger.error(status.message)
raise Exception("Status not ok")
def create_table(self, table_name, dimension, index_file_size, metric_type):
if not self._table_name:
self._table_name = table_name
if metric_type == "l2":
metric_type = MetricType.L2
elif metric_type == "ip":
metric_type = MetricType.IP
else:
logger.error("Not supported metric_type: %s" % metric_type)
create_param = {'table_name': table_name,
'dimension': dimension,
'index_file_size': index_file_size,
"metric_type": metric_type}
status = self._milvus.create_table(create_param)
self.check_status(status)
@time_wrapper
def insert(self, X, ids=None):
status, result = self._milvus.add_vectors(self._table_name, X, ids)
self.check_status(status)
return status, result
@time_wrapper
def create_index(self, index_type, nlist):
if index_type == "flat":
index_type = IndexType.FLAT
elif index_type == "ivf_flat":
index_type = IndexType.IVFLAT
elif index_type == "ivf_sq8":
index_type = IndexType.IVF_SQ8
elif index_type == "mix_nsg":
index_type = IndexType.MIX_NSG
elif index_type == "ivf_sq8h":
index_type = IndexType.IVF_SQ8H
index_params = {
"index_type": index_type,
"nlist": nlist,
}
logger.info("Building index start, table_name: %s, index_params: %s" % (self._table_name, json.dumps(index_params)))
status = self._milvus.create_index(self._table_name, index=index_params, timeout=6*3600)
self.check_status(status)
def describe_index(self):
return self._milvus.describe_index(self._table_name)
def drop_index(self):
logger.info("Drop index: %s" % self._table_name)
return self._milvus.drop_index(self._table_name)
@time_wrapper
def query(self, X, top_k, nprobe):
status, result = self._milvus.search_vectors(self._table_name, top_k, nprobe, X)
self.check_status(status)
return status, result
def count(self):
return self._milvus.get_table_row_count(self._table_name)[1]
def delete(self, timeout=60):
logger.info("Start delete table: %s" % self._table_name)
self._milvus.delete_table(self._table_name)
i = 0
while i < timeout:
if self.count():
time.sleep(1)
i = i + 1
continue
else:
break
if i < timeout:
logger.error("Delete table timeout")
def describe(self):
return self._milvus.describe_table(self._table_name)
def exists_table(self):
return self._milvus.has_table(self._table_name)
@time_wrapper
def preload_table(self):
return self._milvus.preload_table(self._table_name, timeout=3000)
def fit(table_name, X):
milvus = Milvus()
milvus.connect(host = SERVER_HOST_DEFAULT, port = SERVER_PORT_DEFAULT)
start = time.time()
status, ids = milvus.add_vectors(table_name, X)
end = time.time()
logger(status, round(end - start, 2))
def fit_concurrent(table_name, process_num, vectors):
processes = []
for i in range(process_num):
p = Process(target=fit, args=(table_name, vectors, ))
processes.append(p)
p.start()
for p in processes:
p.join()
if __name__ == "__main__":
# table_name = "sift_2m_20_128_l2"
table_name = "test_tset1"
m = MilvusClient(table_name)
# m.create_table(table_name, 128, 50, "l2")
print(m.describe())
# print(m.count())
# print(m.describe_index())
insert_vectors = [[random.random() for _ in range(128)] for _ in range(10000)]
for i in range(5):
m.insert(insert_vectors)
print(m.create_index("ivf_sq8h", 16384))
X = [insert_vectors[0]]
top_k = 10
nprobe = 10
print(m.query(X, top_k, nprobe))
# # # print(m.drop_index())
# # print(m.describe_index())
# # sys.exit()
# # # insert_vectors = [[random.random() for _ in range(128)] for _ in range(100000)]
# # # for i in range(100):
# # # m.insert(insert_vectors)
# # # time.sleep(5)
# # # print(m.describe_index())
# # # print(m.drop_index())
# # m.create_index("ivf_sq8h", 16384)
# print(m.count())
# print(m.describe_index())
# sys.exit()
# print(m.create_index("ivf_sq8h", 16384))
# print(m.count())
# print(m.describe_index())
import numpy as np
def mmap_fvecs(fname):
x = np.memmap(fname, dtype='int32', mode='r')
d = x[0]
return x.view('float32').reshape(-1, d + 1)[:, 1:]
print(mmap_fvecs("/poc/deep1b/deep1B_queries.fvecs"))
# SIFT_SRC_QUERY_DATA_DIR = '/poc/yuncong/ann_1000m'
# file_name = SIFT_SRC_QUERY_DATA_DIR+'/'+'query.npy'
# data = numpy.load(file_name)
# query_vectors = data[0:2].tolist()
# print(len(query_vectors))
# results = m.query(query_vectors, 10, 10)
# result_ids = []
# for result in results[1]:
# tmp = []
# for item in result:
# tmp.append(item.id)
# result_ids.append(tmp)
# print(result_ids[0][:10])
# # gt
# file_name = SIFT_SRC_QUERY_DATA_DIR+"/gnd/"+"idx_1M.ivecs"
# a = numpy.fromfile(file_name, dtype='int32')
# d = a[0]
# true_ids = a.reshape(-1, d + 1)[:, 1:].copy()
# print(true_ids[:3, :2])
# print(len(true_ids[0]))
# import numpy as np
# import sklearn.preprocessing
# def mmap_fvecs(fname):
# x = np.memmap(fname, dtype='int32', mode='r')
# d = x[0]
# return x.view('float32').reshape(-1, d + 1)[:, 1:]
# data = mmap_fvecs("/poc/deep1b/deep1B_queries.fvecs")
# print(data[0], len(data[0]), len(data))
# total_size = 10000
# # total_size = 1000000000
# file_size = 1000
# # file_size = 100000
# file_num = total_size // file_size
# for i in range(file_num):
# fname = "/test/milvus/raw_data/deep1b/binary_96_%05d" % i
# print(fname, i*file_size, (i+1)*file_size)
# single_data = data[i*file_size : (i+1)*file_size]
# single_data = sklearn.preprocessing.normalize(single_data, axis=1, norm='l2')
# np.save(fname, single_data)
* GLOBAL:
FORMAT = "%datetime | %level | %logger | %msg"
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-global.log"
ENABLED = true
TO_FILE = true
TO_STANDARD_OUTPUT = false
SUBSECOND_PRECISION = 3
PERFORMANCE_TRACKING = false
MAX_LOG_FILE_SIZE = 2097152 ## Throw log files away after 2MB
* DEBUG:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-debug.log"
ENABLED = true
* WARNING:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-warning.log"
* TRACE:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-trace.log"
* VERBOSE:
FORMAT = "%datetime{%d/%M/%y} | %level-%vlevel | %msg"
TO_FILE = false
TO_STANDARD_OUTPUT = false
## Error logs
* ERROR:
ENABLED = true
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-error.log"
* FATAL:
ENABLED = true
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-fatal.log"
cache_config:
cache_insert_data: false
cpu_cache_capacity: 16
gpu_cache_capacity: 6
cpu_cache_threshold: 0.85
db_config:
backend_url: sqlite://:@:/
build_index_gpu: 0
insert_buffer_size: 4
preload_table: null
primary_path: /opt/milvus
secondary_path: null
engine_config:
use_blas_threshold: 20
metric_config:
collector: prometheus
enable_monitor: true
prometheus_config:
port: 8080
resource_config:
resource_pool:
- cpu
- gpu0
server_config:
address: 0.0.0.0
deploy_mode: single
port: 19530
time_zone: UTC+8
server_config:
address: 0.0.0.0
port: 19530
deploy_mode: single
time_zone: UTC+8
db_config:
primary_path: /opt/milvus
secondary_path:
backend_url: sqlite://:@:/
insert_buffer_size: 4
build_index_gpu: 0
preload_table:
metric_config:
enable_monitor: false
collector: prometheus
prometheus_config:
port: 8080
cache_config:
cpu_cache_capacity: 16
cpu_cache_threshold: 0.85
cache_insert_data: false
engine_config:
use_blas_threshold: 20
resource_config:
resource_pool:
- cpu
\ No newline at end of file
server_config:
address: 0.0.0.0
port: 19530
deploy_mode: single
time_zone: UTC+8
db_config:
primary_path: /opt/milvus
secondary_path:
backend_url: sqlite://:@:/
insert_buffer_size: 4
build_index_gpu: 0
preload_table:
metric_config:
enable_monitor: false
collector: prometheus
prometheus_config:
port: 8080
cache_config:
cpu_cache_capacity: 16
cpu_cache_threshold: 0.85
cache_insert_data: false
engine_config:
use_blas_threshold: 20
resource_config:
resource_pool:
- cpu
- gpu0
- gpu1
\ No newline at end of file
server_config:
address: 0.0.0.0
port: 19530
deploy_mode: single
time_zone: UTC+8
db_config:
primary_path: /opt/milvus
secondary_path:
backend_url: sqlite://:@:/
insert_buffer_size: 4
build_index_gpu: 0
preload_table:
metric_config:
enable_monitor: false
collector: prometheus
prometheus_config:
port: 8080
cache_config:
cpu_cache_capacity: 16
cpu_cache_threshold: 0.85
cache_insert_data: false
engine_config:
use_blas_threshold: 20
resource_config:
resource_pool:
- cpu
- gpu0
\ No newline at end of file
import os
import logging
import pdb
import time
import random
from multiprocessing import Process
import numpy as np
from client import MilvusClient
nq = 100000
dimension = 128
run_count = 1
table_name = "sift_10m_1024_128_ip"
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
def do_query(milvus, table_name, top_ks, nqs, nprobe, run_count):
bi_res = []
for index, nq in enumerate(nqs):
tmp_res = []
for top_k in top_ks:
avg_query_time = 0.0
total_query_time = 0.0
vectors = insert_vectors[0:nq]
for i in range(run_count):
start_time = time.time()
status, query_res = milvus.query(vectors, top_k, nprobe)
total_query_time = total_query_time + (time.time() - start_time)
if status.code:
print(status.message)
avg_query_time = round(total_query_time / run_count, 2)
tmp_res.append(avg_query_time)
bi_res.append(tmp_res)
return bi_res
while 1:
milvus_instance = MilvusClient(table_name, ip="192.168.1.197", port=19530)
top_ks = random.sample([x for x in range(1, 100)], 4)
nqs = random.sample([x for x in range(1, 1000)], 3)
nprobe = random.choice([x for x in range(1, 500)])
res = do_query(milvus_instance, table_name, top_ks, nqs, nprobe, run_count)
status, res = milvus_instance.insert(insert_vectors, ids=[x for x in range(len(insert_vectors))])
if not status.OK():
logger.error(status.message)
# status = milvus_instance.drop_index()
if not status.OK():
print(status.message)
index_type = "ivf_sq8"
status = milvus_instance.create_index(index_type, 16384)
if not status.OK():
print(status.message)
\ No newline at end of file
import os
import logging
import pdb
import time
import random
from multiprocessing import Process
import numpy as np
from client import MilvusClient
import utils
import parser
from runner import Runner
logger = logging.getLogger("milvus_benchmark.docker")
class DockerRunner(Runner):
"""run docker mode"""
def __init__(self, image):
super(DockerRunner, self).__init__()
self.image = image
def run(self, definition, run_type=None):
if run_type == "performance":
for op_type, op_value in definition.items():
# run docker mode
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
if op_type == "insert":
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["table_name"]
volume_name = param["db_path_prefix"]
print(table_name)
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
# Update server config
utils.modify_config(k, v, type="server", db_slave=None)
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if milvus.exists_table():
milvus.delete()
time.sleep(10)
milvus.create_table(table_name, dimension, index_file_size, metric_type)
res = self.do_insert(milvus, table_name, data_type, dimension, table_size, param["ni_per"])
logger.info(res)
# wait for file merge
time.sleep(6 * (table_size / 500000))
# Clear up
utils.remove_container(container)
elif op_type == "query":
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
volume_name = param["db_path_prefix"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
logger.debug(milvus._milvus.show_tables())
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
# parse index info
index_types = param["index.index_types"]
nlists = param["index.nlists"]
# parse top-k, nq, nprobe
top_ks, nqs, nprobes = parser.search_params_parser(param)
for index_type in index_types:
for nlist in nlists:
result = milvus.describe_index()
logger.info(result)
milvus.create_index(index_type, nlist)
result = milvus.describe_index()
logger.info(result)
# preload index
milvus.preload_table()
logger.info("Start warm up query")
res = self.do_query(milvus, table_name, [1], [1], 1, 1)
logger.info("End warm up query")
# Run query test
for nprobe in nprobes:
logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
headers = ["Nprobe/Top-k"]
headers.extend([str(top_k) for top_k in top_ks])
utils.print_table(headers, nqs, res)
utils.remove_container(container)
elif run_type == "accuracy":
"""
{
"dataset": "random_50m_1024_512",
"index.index_types": ["flat", ivf_flat", "ivf_sq8"],
"index.nlists": [16384],
"nprobes": [1, 32, 128],
"nqs": [100],
"top_ks": [1, 64],
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 256
}
"""
for op_type, op_value in definition.items():
if op_type != "query":
logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type)
break
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
sift_acc = False
if "sift_acc" in param:
sift_acc = param["sift_acc"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
volume_name = param["db_path_prefix"]
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
# parse index info
index_types = param["index.index_types"]
nlists = param["index.nlists"]
# parse top-k, nq, nprobe
top_ks, nqs, nprobes = parser.search_params_parser(param)
if sift_acc is True:
# preload groundtruth data
true_ids_all = self.get_groundtruth_ids(table_size)
acc_dict = {}
for index_type in index_types:
for nlist in nlists:
result = milvus.describe_index()
logger.info(result)
milvus.create_index(index_type, nlist)
# preload index
milvus.preload_table()
# Run query test
for nprobe in nprobes:
logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
for top_k in top_ks:
for nq in nqs:
result_ids = []
id_prefix = "%s_index_%s_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
(table_name, index_type, nlist, metric_type, nprobe, top_k, nq)
if sift_acc is False:
self.do_query_acc(milvus, table_name, top_k, nq, nprobe, id_prefix)
if index_type != "flat":
# Compute accuracy
base_name = "%s_index_flat_nlist_%s_metric_type_%s_nprobe_%s_top_k_%s_nq_%s" % \
(table_name, nlist, metric_type, nprobe, top_k, nq)
avg_acc = self.compute_accuracy(base_name, id_prefix)
logger.info("Query: <%s> accuracy: %s" % (id_prefix, avg_acc))
else:
result_ids = self.do_query_ids(milvus, table_name, top_k, nq, nprobe)
acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
logger.info("Query: <%s> accuracy: %s" % (id_prefix, acc_value))
# # print accuracy table
# headers = [table_name]
# headers.extend([str(top_k) for top_k in top_ks])
# utils.print_table(headers, nqs, res)
# remove container, and run next definition
logger.info("remove container, and run next definition")
utils.remove_container(container)
elif run_type == "stability":
for op_type, op_value in definition.items():
if op_type != "query":
logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type)
break
run_count = op_value["run_count"]
run_params = op_value["params"]
container = None
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
volume_name = param["db_path_prefix"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
# set default test time
if "during_time" not in param:
during_time = 100 # seconds
else:
during_time = int(param["during_time"]) * 60
# set default query process num
if "query_process_num" not in param:
query_process_num = 10
else:
query_process_num = int(param["query_process_num"])
for k, v in param.items():
if k.startswith("server."):
utils.modify_config(k, v, type="server")
container = utils.run_server(self.image, test_type="remote", volume_name=volume_name, db_slave=None)
time.sleep(2)
milvus = MilvusClient(table_name)
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
start_time = time.time()
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
while time.time() < start_time + during_time:
processes = []
# do query
# for i in range(query_process_num):
# milvus_instance = MilvusClient(table_name)
# top_k = random.choice([x for x in range(1, 100)])
# nq = random.choice([x for x in range(1, 100)])
# nprobe = random.choice([x for x in range(1, 1000)])
# # logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
# p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], [nprobe], run_count, ))
# processes.append(p)
# p.start()
# time.sleep(0.1)
# for p in processes:
# p.join()
milvus_instance = MilvusClient(table_name)
top_ks = random.sample([x for x in range(1, 100)], 3)
nqs = random.sample([x for x in range(1, 1000)], 3)
nprobe = random.choice([x for x in range(1, 500)])
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
if int(time.time() - start_time) % 120 == 0:
status, res = milvus_instance.insert(insert_vectors, ids=[x for x in range(len(insert_vectors))])
if not status.OK():
logger.error(status)
# status = milvus_instance.drop_index()
# if not status.OK():
# logger.error(status)
# index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"])
result = milvus.describe_index()
logger.info(result)
milvus_instance.create_index("ivf_sq8", 16384)
utils.remove_container(container)
else:
logger.warning("Run type: %s not supported" % run_type)
import os
import logging
import pdb
import time
import random
from multiprocessing import Process
import numpy as np
from client import MilvusClient
import utils
import parser
from runner import Runner
logger = logging.getLogger("milvus_benchmark.local_runner")
class LocalRunner(Runner):
"""run local mode"""
def __init__(self, ip, port):
super(LocalRunner, self).__init__()
self.ip = ip
self.port = port
def run(self, definition, run_type=None):
if run_type == "performance":
for op_type, op_value in definition.items():
run_count = op_value["run_count"]
run_params = op_value["params"]
if op_type == "insert":
for index, param in enumerate(run_params):
table_name = param["table_name"]
# random_1m_100_512
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
milvus = MilvusClient(table_name, ip=self.ip, port=self.port)
# Check has table or not
if milvus.exists_table():
milvus.delete()
time.sleep(10)
milvus.create_table(table_name, dimension, index_file_size, metric_type)
res = self.do_insert(milvus, table_name, data_type, dimension, table_size, param["ni_per"])
logger.info(res)
elif op_type == "query":
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
milvus = MilvusClient(table_name, ip=self.ip, port=self.port)
# parse index info
index_types = param["index.index_types"]
nlists = param["index.nlists"]
# parse top-k, nq, nprobe
top_ks, nqs, nprobes = parser.search_params_parser(param)
for index_type in index_types:
for nlist in nlists:
milvus.create_index(index_type, nlist)
# preload index
milvus.preload_table()
# Run query test
for nprobe in nprobes:
logger.info("index_type: %s, nlist: %s, metric_type: %s, nprobe: %s" % (index_type, nlist, metric_type, nprobe))
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
headers = [param["dataset"]]
headers.extend([str(top_k) for top_k in top_ks])
utils.print_table(headers, nqs, res)
elif run_type == "stability":
for op_type, op_value in definition.items():
if op_type != "query":
logger.warning("invalid operation: %s in accuracy test, only support query operation" % op_type)
break
run_count = op_value["run_count"]
run_params = op_value["params"]
nq = 10000
for index, param in enumerate(run_params):
logger.info("Definition param: %s" % str(param))
table_name = param["dataset"]
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
# set default test time
if "during_time" not in param:
during_time = 100 # seconds
else:
during_time = int(param["during_time"]) * 60
# set default query process num
if "query_process_num" not in param:
query_process_num = 10
else:
query_process_num = int(param["query_process_num"])
milvus = MilvusClient(table_name)
# Check has table or not
if not milvus.exists_table():
logger.warning("Table %s not existed, continue exec next params ..." % table_name)
continue
start_time = time.time()
insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
while time.time() < start_time + during_time:
processes = []
# # do query
# for i in range(query_process_num):
# milvus_instance = MilvusClient(table_name)
# top_k = random.choice([x for x in range(1, 100)])
# nq = random.choice([x for x in range(1, 1000)])
# nprobe = random.choice([x for x in range(1, 500)])
# logger.info(nprobe)
# p = Process(target=self.do_query, args=(milvus_instance, table_name, [top_k], [nq], 64, run_count, ))
# processes.append(p)
# p.start()
# time.sleep(0.1)
# for p in processes:
# p.join()
milvus_instance = MilvusClient(table_name)
top_ks = random.sample([x for x in range(1, 100)], 4)
nqs = random.sample([x for x in range(1, 1000)], 3)
nprobe = random.choice([x for x in range(1, 500)])
res = self.do_query(milvus, table_name, top_ks, nqs, nprobe, run_count)
# milvus_instance = MilvusClient(table_name)
status, res = milvus_instance.insert(insert_vectors, ids=[x for x in range(len(insert_vectors))])
if not status.OK():
logger.error(status.message)
if (time.time() - start_time) % 300 == 0:
status = milvus_instance.drop_index()
if not status.OK():
logger.error(status.message)
index_type = random.choice(["flat", "ivf_flat", "ivf_sq8"])
status = milvus_instance.create_index(index_type, 16384)
if not status.OK():
logger.error(status.message)
import os
import sys
import time
import pdb
import argparse
import logging
import utils
from yaml import load, dump
from logging import handlers
from parser import operations_parser
from local_runner import LocalRunner
from docker_runner import DockerRunner
DEFAULT_IMAGE = "milvusdb/milvus:latest"
LOG_FOLDER = "benchmark_logs"
logger = logging.getLogger("milvus_benchmark")
formatter = logging.Formatter('[%(asctime)s] [%(levelname)-4s] [%(pathname)s:%(lineno)d] %(message)s')
if not os.path.exists(LOG_FOLDER):
os.system('mkdir -p %s' % LOG_FOLDER)
fileTimeHandler = handlers.TimedRotatingFileHandler(os.path.join(LOG_FOLDER, 'milvus_benchmark'), "D", 1, 10)
fileTimeHandler.suffix = "%Y%m%d.log"
fileTimeHandler.setFormatter(formatter)
logging.basicConfig(level=logging.DEBUG)
fileTimeHandler.setFormatter(formatter)
logger.addHandler(fileTimeHandler)
def positive_int(s):
i = None
try:
i = int(s)
except ValueError:
pass
if not i or i < 1:
raise argparse.ArgumentTypeError("%r is not a positive integer" % s)
return i
# # link random_data if not exists
# def init_env():
# if not os.path.islink(BINARY_DATA_FOLDER):
# try:
# os.symlink(SRC_BINARY_DATA_FOLDER, BINARY_DATA_FOLDER)
# except Exception as e:
# logger.error("Create link failed: %s" % str(e))
# sys.exit()
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--image',
help='use the given image')
parser.add_argument(
'--local',
action='store_true',
help='use local milvus server')
parser.add_argument(
"--run-count",
default=1,
type=positive_int,
help="run each db operation times")
# performance / stability / accuracy test
parser.add_argument(
"--run-type",
default="performance",
help="run type, default performance")
parser.add_argument(
'--suites',
metavar='FILE',
help='load test suites from FILE',
default='suites.yaml')
parser.add_argument(
'--ip',
help='server ip param for local mode',
default='127.0.0.1')
parser.add_argument(
'--port',
help='server port param for local mode',
default='19530')
args = parser.parse_args()
operations = None
# Get all benchmark test suites
if args.suites:
with open(args.suites) as f:
suites_dict = load(f)
f.close()
# With definition order
operations = operations_parser(suites_dict, run_type=args.run_type)
# init_env()
run_params = {"run_count": args.run_count}
if args.image:
# for docker mode
if args.local:
logger.error("Local mode and docker mode are incompatible arguments")
sys.exit(-1)
# Docker pull image
if not utils.pull_image(args.image):
raise Exception('Image %s pull failed' % image)
# TODO: Check milvus server port is available
logger.info("Init: remove all containers created with image: %s" % args.image)
utils.remove_all_containers(args.image)
runner = DockerRunner(args.image)
for operation_type in operations:
logger.info("Start run test, test type: %s" % operation_type)
run_params["params"] = operations[operation_type]
runner.run({operation_type: run_params}, run_type=args.run_type)
logger.info("Run params: %s" % str(run_params))
if args.local:
# for local mode
ip = args.ip
port = args.port
runner = LocalRunner(ip, port)
for operation_type in operations:
logger.info("Start run local mode test, test type: %s" % operation_type)
run_params["params"] = operations[operation_type]
runner.run({operation_type: run_params}, run_type=args.run_type)
logger.info("Run params: %s" % str(run_params))
if __name__ == "__main__":
main()
\ No newline at end of file
from __future__ import absolute_import
import pdb
import time
class Base(object):
pass
class Insert(Base):
pass
\ No newline at end of file
import pdb
import logging
logger = logging.getLogger("milvus_benchmark.parser")
def operations_parser(operations, run_type="performance"):
definitions = operations[run_type]
return definitions
def table_parser(table_name):
tmp = table_name.split("_")
# if len(tmp) != 5:
# return None
data_type = tmp[0]
table_size_unit = tmp[1][-1]
table_size = tmp[1][0:-1]
if table_size_unit == "m":
table_size = int(table_size) * 1000000
elif table_size_unit == "b":
table_size = int(table_size) * 1000000000
index_file_size = int(tmp[2])
dimension = int(tmp[3])
metric_type = str(tmp[4])
return (data_type, table_size, index_file_size, dimension, metric_type)
def search_params_parser(param):
# parse top-k, set default value if top-k not in param
if "top_ks" not in param:
top_ks = [10]
else:
top_ks = param["top_ks"]
if isinstance(top_ks, int):
top_ks = [top_ks]
elif isinstance(top_ks, list):
top_ks = list(top_ks)
else:
logger.warning("Invalid format top-ks: %s" % str(top_ks))
# parse nqs, set default value if nq not in param
if "nqs" not in param:
nqs = [10]
else:
nqs = param["nqs"]
if isinstance(nqs, int):
nqs = [nqs]
elif isinstance(nqs, list):
nqs = list(nqs)
else:
logger.warning("Invalid format nqs: %s" % str(nqs))
# parse nprobes
if "nprobes" not in param:
nprobes = [1]
else:
nprobes = param["nprobes"]
if isinstance(nprobes, int):
nprobes = [nprobes]
elif isinstance(nprobes, list):
nprobes = list(nprobes)
else:
logger.warning("Invalid format nprobes: %s" % str(nprobes))
return top_ks, nqs, nprobes
\ No newline at end of file
# from tablereport import Table
# from tablereport.shortcut import write_to_excel
# RESULT_FOLDER = "results"
# def create_table(headers, bodys, table_name):
# table = Table(header=[headers],
# body=[bodys])
# write_to_excel('%s/%s.xlsx' % (RESULT_FOLDER, table_name), table)
\ No newline at end of file
numpy==1.16.3
pymilvus>=0.1.18
pyyaml==3.12
docker==4.0.2
tableprint==0.8.0
ansicolors==1.1.8
\ No newline at end of file
import os
import logging
import pdb
import time
import random
from multiprocessing import Process
import numpy as np
from client import MilvusClient
import utils
import parser
logger = logging.getLogger("milvus_benchmark.runner")
SERVER_HOST_DEFAULT = "127.0.0.1"
SERVER_PORT_DEFAULT = 19530
VECTORS_PER_FILE = 1000000
SIFT_VECTORS_PER_FILE = 100000
MAX_NQ = 10001
FILE_PREFIX = "binary_"
RANDOM_SRC_BINARY_DATA_DIR = '/tmp/random/binary_data'
SIFT_SRC_DATA_DIR = '/tmp/sift1b/query'
SIFT_SRC_BINARY_DATA_DIR = '/tmp/sift1b/binary_data'
SIFT_SRC_GROUNDTRUTH_DATA_DIR = '/tmp/sift1b/groundtruth'
WARM_TOP_K = 1
WARM_NQ = 1
DEFAULT_DIM = 512
GROUNDTRUTH_MAP = {
"1000000": "idx_1M.ivecs",
"2000000": "idx_2M.ivecs",
"5000000": "idx_5M.ivecs",
"10000000": "idx_10M.ivecs",
"20000000": "idx_20M.ivecs",
"50000000": "idx_50M.ivecs",
"100000000": "idx_100M.ivecs",
"200000000": "idx_200M.ivecs",
"500000000": "idx_500M.ivecs",
"1000000000": "idx_1000M.ivecs",
}
def gen_file_name(idx, table_dimension, data_type):
s = "%05d" % idx
fname = FILE_PREFIX + str(table_dimension) + "d_" + s + ".npy"
if data_type == "random":
fname = RANDOM_SRC_BINARY_DATA_DIR+'/'+fname
elif data_type == "sift":
fname = SIFT_SRC_BINARY_DATA_DIR+'/'+fname
return fname
def get_vectors_from_binary(nq, dimension, data_type):
# use the first file, nq should be less than VECTORS_PER_FILE
if nq > MAX_NQ:
raise Exception("Over size nq")
if data_type == "random":
file_name = gen_file_name(0, dimension, data_type)
elif data_type == "sift":
file_name = SIFT_SRC_DATA_DIR+'/'+'query.npy'
data = np.load(file_name)
vectors = data[0:nq].tolist()
return vectors
class Runner(object):
def __init__(self):
pass
def do_insert(self, milvus, table_name, data_type, dimension, size, ni):
'''
@params:
mivlus: server connect instance
dimension: table dimensionn
# index_file_size: size trigger file merge
size: row count of vectors to be insert
ni: row count of vectors to be insert each time
# store_id: if store the ids returned by call add_vectors or not
@return:
total_time: total time for all insert operation
qps: vectors added per second
ni_time: avarage insert operation time
'''
bi_res = {}
total_time = 0.0
qps = 0.0
ni_time = 0.0
if data_type == "random":
vectors_per_file = VECTORS_PER_FILE
elif data_type == "sift":
vectors_per_file = SIFT_VECTORS_PER_FILE
if size % vectors_per_file or ni > vectors_per_file:
raise Exception("Not invalid table size or ni")
file_num = size // vectors_per_file
for i in range(file_num):
file_name = gen_file_name(i, dimension, data_type)
logger.info("Load npy file: %s start" % file_name)
data = np.load(file_name)
logger.info("Load npy file: %s end" % file_name)
loops = vectors_per_file // ni
for j in range(loops):
vectors = data[j*ni:(j+1)*ni].tolist()
ni_start_time = time.time()
# start insert vectors
start_id = i * vectors_per_file + j * ni
end_id = start_id + len(vectors)
logger.info("Start id: %s, end id: %s" % (start_id, end_id))
ids = [k for k in range(start_id, end_id)]
status, ids = milvus.insert(vectors, ids=ids)
ni_end_time = time.time()
total_time = total_time + ni_end_time - ni_start_time
qps = round(size / total_time, 2)
ni_time = round(total_time / (loops * file_num), 2)
bi_res["total_time"] = round(total_time, 2)
bi_res["qps"] = qps
bi_res["ni_time"] = ni_time
return bi_res
def do_query(self, milvus, table_name, top_ks, nqs, nprobe, run_count):
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type)
bi_res = []
for index, nq in enumerate(nqs):
tmp_res = []
for top_k in top_ks:
avg_query_time = 0.0
total_query_time = 0.0
vectors = base_query_vectors[0:nq]
logger.info("Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}".format(top_k, nq, len(vectors)))
for i in range(run_count):
logger.info("Start run query, run %d of %s" % (i+1, run_count))
start_time = time.time()
status, query_res = milvus.query(vectors, top_k, nprobe)
total_query_time = total_query_time + (time.time() - start_time)
if status.code:
logger.error("Query failed with message: %s" % status.message)
avg_query_time = round(total_query_time / run_count, 2)
logger.info("Avarage query time: %.2f" % avg_query_time)
tmp_res.append(avg_query_time)
bi_res.append(tmp_res)
return bi_res
def do_query_ids(self, milvus, table_name, top_k, nq, nprobe):
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type)
vectors = base_query_vectors[0:nq]
logger.info("Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}".format(top_k, nq, len(vectors)))
status, query_res = milvus.query(vectors, top_k, nprobe)
if not status.OK():
msg = "Query failed with message: %s" % status.message
raise Exception(msg)
result_ids = []
for result in query_res:
tmp = []
for item in result:
tmp.append(item.id)
result_ids.append(tmp)
return result_ids
def do_query_acc(self, milvus, table_name, top_k, nq, nprobe, id_store_name):
(data_type, table_size, index_file_size, dimension, metric_type) = parser.table_parser(table_name)
base_query_vectors = get_vectors_from_binary(MAX_NQ, dimension, data_type)
vectors = base_query_vectors[0:nq]
logger.info("Start query, query params: top-k: {}, nq: {}, actually length of vectors: {}".format(top_k, nq, len(vectors)))
status, query_res = milvus.query(vectors, top_k, nprobe)
if not status.OK():
msg = "Query failed with message: %s" % status.message
raise Exception(msg)
# if file existed, cover it
if os.path.isfile(id_store_name):
os.remove(id_store_name)
with open(id_store_name, 'a+') as fd:
for nq_item in query_res:
for item in nq_item:
fd.write(str(item.id)+'\t')
fd.write('\n')
# compute and print accuracy
def compute_accuracy(self, flat_file_name, index_file_name):
flat_id_list = []; index_id_list = []
logger.info("Loading flat id file: %s" % flat_file_name)
with open(flat_file_name, 'r') as flat_id_fd:
for line in flat_id_fd:
tmp_list = line.strip("\n").strip().split("\t")
flat_id_list.append(tmp_list)
logger.info("Loading index id file: %s" % index_file_name)
with open(index_file_name) as index_id_fd:
for line in index_id_fd:
tmp_list = line.strip("\n").strip().split("\t")
index_id_list.append(tmp_list)
if len(flat_id_list) != len(index_id_list):
raise Exception("Flat index result length: <flat: %s, index: %s> not match, Acc compute exiting ..." % (len(flat_id_list), len(index_id_list)))
# get the accuracy
return self.get_recall_value(flat_id_list, index_id_list)
def get_recall_value(self, flat_id_list, index_id_list):
"""
Use the intersection length
"""
sum_radio = 0.0
for index, item in enumerate(index_id_list):
tmp = set(item).intersection(set(flat_id_list[index]))
sum_radio = sum_radio + len(tmp) / len(item)
return round(sum_radio / len(index_id_list), 3)
"""
Implementation based on:
https://github.com/facebookresearch/faiss/blob/master/benchs/datasets.py
"""
def get_groundtruth_ids(self, table_size):
fname = GROUNDTRUTH_MAP[str(table_size)]
fname = SIFT_SRC_GROUNDTRUTH_DATA_DIR + "/" + fname
a = np.fromfile(fname, dtype='int32')
d = a[0]
true_ids = a.reshape(-1, d + 1)[:, 1:].copy()
return true_ids
# data sets
datasets:
hf5:
gist-960,sift-128
npy:
50000000-512, 100000000-512
operations:
# interface: search_vectors
query:
# dataset: table name you have already created
# key starts with "server." need to reconfig and restart server, including nprpbe/nlist/use_blas_threshold/..
[
# debug
# {"dataset": "ip_ivfsq8_1000", "top_ks": [16], "nqs": [1], "server.nprobe": 1, "server.use_blas_threshold": 800, "server.cpu_cache_capacity": 110},
{"dataset": "ip_ivfsq8_1000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "nqs": [1, 10, 100, 500, 800, 1000], "server.nprobe": 1, "server.use_blas_threshold": 800, "server.cpu_cache_capacity": 110},
{"dataset": "ip_ivfsq8_1000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "nqs": [1, 10, 100, 500, 800, 1000], "server.nprobe": 10, "server.use_blas_threshold": 20, "server.cpu_cache_capacity": 110},
{"dataset": "ip_ivfsq8_5000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "nqs": [1, 10, 100, 500, 800, 1000], "server.nprobe": 1, "server.use_blas_threshold": 800, "server.cpu_cache_capacity": 110},
{"dataset": "ip_ivfsq8_5000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "nqs": [1, 10, 100, 500, 800, 1000], "server.nprobe": 10, "server.use_blas_threshold": 20, "server.cpu_cache_capacity": 110},
{"dataset": "ip_ivfsq8_40000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "nqs": [1, 10, 100, 500, 800, 1000], "server.nprobe": 1, "server.use_blas_threshold": 800, "server.cpu_cache_capacity": 110},
# {"dataset": "ip_ivfsq8_40000", "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256], "nqs": [1, 10, 100, 1000], "server.nprobe": 10, "server.use_blas_threshold": 20, "server.cpu_cache_capacity": 110},
]
# interface: add_vectors
insert:
# index_type: flat/ivf_flat/ivf_sq8
[
# debug
{"table_name": "ip_ivf_flat_20m_1024", "table.index_type": "ivf_flat", "server.index_building_threshold": 1024, "table.size": 20000000, "table.ni": 100000, "table.dim": 512, "server.cpu_cache_capacity": 110},
{"table_name": "ip_ivf_sq8_50m_1024", "table.index_type": "ivf_sq8", "server.index_building_threshold": 1024, "table.size": 50000000, "table.ni": 100000, "table.dim": 512, "server.cpu_cache_capacity": 110},
]
# TODO: interface: build_index
build: []
accuracy:
# interface: search_vectors
query:
[
{
"dataset": "random_20m_1024_512_ip",
# index info
"index.index_types": ["flat", "ivf_sq8"],
"index.nlists": [16384],
"index.metric_types": ["ip"],
"nprobes": [1, 16, 64],
"top_ks": [64],
"nqs": [100],
"server.cpu_cache_capacity": 100,
"server.resources": ["cpu", "gpu0"],
"db_path_prefix": "/test/milvus/db_data/random_20m_1024_512_ip",
},
# {
# "dataset": "sift_50m_1024_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "index.metric_types": ["l2"],
# "nprobes": [1, 16, 64],
# "top_ks": [64],
# "nqs": [100],
# "server.cpu_cache_capacity": 160,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data/sift_50m_1024_128_l2",
# "sift_acc": true
# },
# {
# "dataset": "sift_50m_1024_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "index.metric_types": ["l2"],
# "nprobes": [1, 16, 64],
# "top_ks": [64],
# "nqs": [100],
# "server.cpu_cache_capacity": 160,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data/sift_50m_1024_128_l2_sq8",
# "sift_acc": true
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "index.metric_types": ["l2"],
# "nprobes": [1, 16, 64, 128],
# "top_ks": [64],
# "nqs": [100],
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu"],
# "db_path_prefix": "/test/milvus/db_data/sift_1b_2048_128_l2_sq8h",
# "sift_acc": true
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "index.metric_types": ["l2"],
# "nprobes": [1, 16, 64, 128],
# "top_ks": [64],
# "nqs": [100],
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data/sift_1b_2048_128_l2_sq8h",
# "sift_acc": true
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "index.metric_types": ["l2"],
# "nprobes": [1, 16, 64, 128],
# "top_ks": [64],
# "nqs": [100],
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu", "gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data/sift_1b_2048_128_l2_sq8h",
# "sift_acc": true
# },
# {
# "dataset": "sift_1m_1024_128_l2",
# "index.index_types": ["flat", "ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1, 32, 128, 256, 512],
# "nqs": 10,
# "top_ks": 10,
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "sift_10m_1024_128_l2",
# "index.index_types": ["flat", "ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1, 32, 128, 256, 512],
# "nqs": 10,
# "top_ks": 10,
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 32,
# },
# {
# "dataset": "sift_50m_1024_128_l2",
# "index.index_types": ["flat", "ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1, 32, 128, 256, 512],
# "nqs": 10,
# "top_ks": 10,
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 64,
# }
]
\ No newline at end of file
performance:
# interface: add_vectors
insert:
# index_type: flat/ivf_flat/ivf_sq8/mix_nsg
[
# debug
# data_type / data_size / index_file_size / dimension
# data_type: random / ann_sift
# data_size: 10m / 1b
# {
# "table_name": "random_50m_1024_512_ip",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# "server.cpu_cache_capacity": 16,
# # "server.resources": ["gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "table_name": "random_5m_1024_512_ip",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# "server.cpu_cache_capacity": 16,
# "server.resources": ["gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data/random_5m_1024_512_ip"
# },
# {
# "table_name": "sift_1m_50_128_l2",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# # "server.cpu_cache_capacity": 16,
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "table_name": "sift_1m_256_128_l2",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# # "server.cpu_cache_capacity": 16,
# "db_path_prefix": "/test/milvus/db_data"
# }
# {
# "table_name": "sift_50m_1024_128_l2",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# # "server.cpu_cache_capacity": 16,
# },
# {
# "table_name": "sift_100m_1024_128_l2",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# },
# {
# "table_name": "sift_1b_2048_128_l2",
# "ni_per": 100000,
# "processes": 5, # multiprocessing
# "server.cpu_cache_capacity": 16,
# }
]
# interface: search_vectors
query:
# dataset: table name you have already created
# key starts with "server." need to reconfig and restart server, including use_blas_threshold/cpu_cache_capacity ..
[
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data/sift_1b_2048_128_l2_sq8h"
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data/sift_1b_2048_128_l2"
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 200,
# "server.resources": ["cpu"],
# "db_path_prefix": "/test/milvus/db_data"
# },
{
"dataset": "random_50m_1024_512_ip",
"index.index_types": ["ivf_sq8h"],
"index.nlists": [16384],
"nprobes": [8],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
"top_ks": [512],
# "nqs": [1, 10, 100, 500, 1000],
"nqs": [500],
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 150,
"server.gpu_cache_capacity": 6,
"server.resources": ["cpu", "gpu0", "gpu1"],
"db_path_prefix": "/test/milvus/db_data/random_50m_1024_512_ip"
},
# {
# "dataset": "random_50m_1024_512_ip",
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 150,
# "server.resources": ["cpu", "gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data/random_50m_1024_512_ip_sq8"
# },
# {
# "dataset": "random_20m_1024_512_ip",
# "index.index_types": ["flat"],
# "index.nlists": [16384],
# "nprobes": [50],
# "top_ks": [64],
# "nqs": [10],
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 100,
# "server.resources": ["cpu", "gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data/random_20m_1024_512_ip"
# },
# {
# "dataset": "random_100m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 250,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "dataset": "random_100m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [8, 32],
# "top_ks": [1, 8, 16, 32, 64, 128, 256, 512, 1000],
# "nqs": [1, 10, 100, 500, 1000],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 250,
# "server.resources": ["cpu"],
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "dataset": "random_10m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# # "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "random_10m_1024_512_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 64
# },
# {
# "dataset": "sift_500m_1024_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 8, 16, 64, 256, 512, 1000],
# "nqs": [1, 100, 500, 800, 1000, 1500],
# # "top_ks": [256],
# # "nqs": [800],
# "processes": 1, # multiprocessing
# # "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 120,
# "server.resources": ["gpu0", "gpu1"],
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8h"],
# "index.nlists": [16384],
# "nprobes": [1],
# # "top_ks": [1],
# # "nqs": [1],
# "top_ks": [256],
# "nqs": [800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 110,
# "server.resources": ["cpu", "gpu0"],
# "db_path_prefix": "/test/milvus/db_data"
# },
# {
# "dataset": "random_50m_1024_512_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# # "top_ks": [256],
# # "nqs": [800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 128
# },
# [
# {
# "dataset": "sift_1m_50_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1],
# "nqs": [1],
# "db_path_prefix": "/test/milvus/db_data"
# # "processes": 1, # multiprocessing
# # "server.use_blas_threshold": 1100,
# # "server.cpu_cache_capacity": 256
# }
]
\ No newline at end of file
stability:
# interface: search_vectors / add_vectors mix operation
query:
[
{
"dataset": "random_20m_1024_512_ip",
# "nqs": [1, 10, 100, 1000, 10000],
# "pds": [0.1, 0.44, 0.44, 0.02],
"query_process_num": 10,
# each 10s, do an insertion
# "insert_interval": 1,
# minutes
"during_time": 360,
"server.cpu_cache_capacity": 100
},
]
\ No newline at end of file
#"server.resources": ["gpu0", "gpu1"]
performance:
# interface: search_vectors
query:
# dataset: table name you have already created
# key starts with "server." need to reconfig and restart server, including use_blas_threshold/cpu_cache_capacity ..
[
# debug
# {
# "dataset": "random_10m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "random_10m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "random_10m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# # "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "random_10m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# # "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 16,
# },
# {
# "dataset": "random_10m_1024_512_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 64
# },
# {
# "dataset": "sift_50m_1024_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1, 32, 128],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# # "top_ks": [256],
# # "nqs": [800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 310,
# "server.resources": ["gpu0", "gpu1"]
# },
{
"dataset": "sift_1m_1024_128_l2",
# index info
"index.index_types": ["ivf_sq8"],
"index.nlists": [16384],
"nprobes": [32],
"top_ks": [10],
"nqs": [100],
# "top_ks": [256],
# "nqs": [800],
"processes": 1, # multiprocessing
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 310,
"server.resources": ["cpu"]
},
{
"dataset": "sift_1m_1024_128_l2",
# index info
"index.index_types": ["ivf_sq8"],
"index.nlists": [16384],
"nprobes": [32],
"top_ks": [10],
"nqs": [100],
# "top_ks": [256],
# "nqs": [800],
"processes": 1, # multiprocessing
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 310,
"server.resources": ["gpu0"]
},
{
"dataset": "sift_1m_1024_128_l2",
# index info
"index.index_types": ["ivf_sq8"],
"index.nlists": [16384],
"nprobes": [32],
"top_ks": [10],
"nqs": [100],
# "top_ks": [256],
# "nqs": [800],
"processes": 1, # multiprocessing
"server.use_blas_threshold": 1100,
"server.cpu_cache_capacity": 310,
"server.resources": ["gpu0", "gpu1"]
},
# {
# "dataset": "sift_1b_2048_128_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# # "top_ks": [256],
# # "nqs": [800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 310
# },
# {
# "dataset": "random_50m_1024_512_l2",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# # "top_ks": [256],
# # "nqs": [800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 128,
# "server.resources": ["gpu0", "gpu1"]
# },
# {
# "dataset": "random_100m_1024_512_ip",
# # index info
# "index.index_types": ["ivf_sq8"],
# "index.nlists": [16384],
# "nprobes": [1],
# "top_ks": [1, 2, 4, 8, 16, 32, 64, 128, 256],
# "nqs": [1, 10, 100, 500, 800],
# "processes": 1, # multiprocessing
# "server.use_blas_threshold": 1100,
# "server.cpu_cache_capacity": 256
# },
]
\ No newline at end of file
# -*- coding: utf-8 -*-
from __future__ import print_function
__true_print = print # noqa
import os
import sys
import pdb
import time
import datetime
import argparse
import threading
import logging
import docker
import multiprocessing
import numpy
# import psutil
from yaml import load, dump
import tableprint as tp
logger = logging.getLogger("milvus_benchmark.utils")
MULTI_DB_SLAVE_PATH = "/opt/milvus/data2;/opt/milvus/data3"
def get_current_time():
return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
def print_table(headers, columns, data):
bodys = []
for index, value in enumerate(columns):
tmp = [value]
tmp.extend(data[index])
bodys.append(tmp)
tp.table(bodys, headers)
def modify_config(k, v, type=None, file_path="conf/server_config.yaml", db_slave=None):
if not os.path.isfile(file_path):
raise Exception('File: %s not found' % file_path)
with open(file_path) as f:
config_dict = load(f)
f.close()
if config_dict:
if k.find("use_blas_threshold") != -1:
config_dict['engine_config']['use_blas_threshold'] = int(v)
elif k.find("cpu_cache_capacity") != -1:
config_dict['cache_config']['cpu_cache_capacity'] = int(v)
elif k.find("gpu_cache_capacity") != -1:
config_dict['cache_config']['gpu_cache_capacity'] = int(v)
elif k.find("resource_pool") != -1:
config_dict['resource_config']['resource_pool'] = v
if db_slave:
config_dict['db_config']['db_slave_path'] = MULTI_DB_SLAVE_PATH
with open(file_path, 'w') as f:
dump(config_dict, f, default_flow_style=False)
f.close()
else:
raise Exception('Load file:%s error' % file_path)
def pull_image(image):
registry = image.split(":")[0]
image_tag = image.split(":")[1]
client = docker.APIClient(base_url='unix://var/run/docker.sock')
logger.info("Start pulling image: %s" % image)
return client.pull(registry, image_tag)
def run_server(image, mem_limit=None, timeout=30, test_type="local", volume_name=None, db_slave=None):
import colors
client = docker.from_env()
# if mem_limit is None:
# mem_limit = psutil.virtual_memory().available
# logger.info('Memory limit:', mem_limit)
# cpu_limit = "0-%d" % (multiprocessing.cpu_count() - 1)
# logger.info('Running on CPUs:', cpu_limit)
for dir_item in ['logs', 'db']:
try:
os.mkdir(os.path.abspath(dir_item))
except Exception as e:
pass
if test_type == "local":
volumes = {
os.path.abspath('conf'):
{'bind': '/opt/milvus/conf', 'mode': 'ro'},
os.path.abspath('logs'):
{'bind': '/opt/milvus/logs', 'mode': 'rw'},
os.path.abspath('db'):
{'bind': '/opt/milvus/db', 'mode': 'rw'},
}
elif test_type == "remote":
if volume_name is None:
raise Exception("No volume name")
remote_log_dir = volume_name+'/logs'
remote_db_dir = volume_name+'/db'
for dir_item in [remote_log_dir, remote_db_dir]:
if not os.path.isdir(dir_item):
os.makedirs(dir_item, exist_ok=True)
volumes = {
os.path.abspath('conf'):
{'bind': '/opt/milvus/conf', 'mode': 'ro'},
remote_log_dir:
{'bind': '/opt/milvus/logs', 'mode': 'rw'},
remote_db_dir:
{'bind': '/opt/milvus/db', 'mode': 'rw'}
}
# add volumes
if db_slave and isinstance(db_slave, int):
for i in range(2, db_slave+1):
remote_db_dir = volume_name+'/data'+str(i)
if not os.path.isdir(remote_db_dir):
os.makedirs(remote_db_dir, exist_ok=True)
volumes[remote_db_dir] = {'bind': '/opt/milvus/data'+str(i), 'mode': 'rw'}
container = client.containers.run(
image,
volumes=volumes,
runtime="nvidia",
ports={'19530/tcp': 19530, '8080/tcp': 8080},
environment=["OMP_NUM_THREADS=48"],
# cpuset_cpus=cpu_limit,
# mem_limit=mem_limit,
# environment=[""],
detach=True)
def stream_logs():
for line in container.logs(stream=True):
logger.info(colors.color(line.decode().rstrip(), fg='blue'))
if sys.version_info >= (3, 0):
t = threading.Thread(target=stream_logs, daemon=True)
else:
t = threading.Thread(target=stream_logs)
t.daemon = True
t.start()
logger.info('Container: %s started' % container)
return container
# exit_code = container.wait(timeout=timeout)
# # Exit if exit code
# if exit_code == 0:
# return container
# elif exit_code is not None:
# print(colors.color(container.logs().decode(), fg='red'))
# raise Exception('Child process raised exception %s' % str(exit_code))
def restart_server(container):
client = docker.APIClient(base_url='unix://var/run/docker.sock')
client.restart(container.name)
logger.info('Container: %s restarted' % container.name)
return container
def remove_container(container):
container.remove(force=True)
logger.info('Container: %s removed' % container)
def remove_all_containers(image):
client = docker.from_env()
try:
for container in client.containers.list():
if image in container.image.tags:
container.stop(timeout=30)
container.remove(force=True)
except Exception as e:
logger.error("Containers removed failed")
def container_exists(image):
'''
Check if container existed with the given image name
@params: image name
@return: container if exists
'''
res = False
client = docker.from_env()
for container in client.containers.list():
if image in container.image.tags:
# True
res = container
return res
if __name__ == '__main__':
# print(pull_image('branch-0.3.1-debug'))
stop_server()
\ No newline at end of file
node_modules
npm-debug.log
Dockerfile*
docker-compose*
.dockerignore
.git
.gitignore
.env
*/bin
*/obj
README.md
LICENSE
.vscode
__pycache__
\ No newline at end of file
.python-version
.pytest_cache
__pycache__
.vscode
.idea
test_out/
*.pyc
db/
logs/
.coverage
FROM python:3.6.8-jessie
LABEL Name=megasearch_engine_test Version=0.0.1
WORKDIR /app
ADD . /app
RUN apt-get update && apt-get install -y --no-install-recommends \
libc-dev build-essential && \
python3 -m pip install -r requirements.txt && \
apt-get remove --purge -y
ENTRYPOINT [ "/app/docker-entrypoint.sh" ]
CMD [ "start" ]
\ No newline at end of file
# Milvus test cases
## * Interfaces test
### 1. 连接测试
#### 1.1 连接
| cases | expected |
| ---------------- | -------------------------------------------- |
| 非法IP 123.0.0.2 | method: connect raise error in given timeout |
| 正常 uri | attr: connected assert true |
| 非法 uri | method: connect raise error in given timeout |
| 最大连接数 | all connection attrs: connected assert true |
| | |
#### 1.2 断开连接
| cases | expected |
| ------------------------ | ------------------- |
| 正常连接下,断开连接 | connect raise error |
| 正常连接下,重复断开连接 | connect raise error |
### 2. Table operation
#### 2.1 表创建
##### 2.1.1 表名
| cases | expected |
| ------------------------- | ----------- |
| 基础功能,参数正常 | status pass |
| 表名已存在 | status fail |
| 表名:"中文" | status pass |
| 表名带特殊字符: "-39fsd-" | status pass |
| 表名带空格: "test1 2" | status pass |
| invalid dim: 0 | raise error |
| invalid dim: -1 | raise error |
| invalid dim: 100000000 | raise error |
| invalid dim: "string" | raise error |
| index_type: 0 | status pass |
| index_type: 1 | status pass |
| index_type: 2 | status pass |
| index_type: string | raise error |
| | |
##### 2.1.2 维数支持
| cases | expected |
| --------------------- | ----------- |
| 维数: 0 | raise error |
| 维数负数: -1 | raise error |
| 维数最大值: 100000000 | raise error |
| 维数字符串: "string" | raise error |
| | |
##### 2.1.3 索引类型支持
| cases | expected |
| ---------------- | ----------- |
| 索引类型: 0 | status pass |
| 索引类型: 1 | status pass |
| 索引类型: 2 | status pass |
| 索引类型: string | raise error |
| | |
#### 2.2 表说明
| cases | expected |
| ---------------------- | -------------------------------- |
| 创建表后,执行describe | 返回结构体,元素与创建表参数一致 |
| | |
#### 2.3 表删除
| cases | expected |
| -------------- | ---------------------- |
| 删除已存在表名 | has_table return False |
| 删除不存在表名 | status fail |
| | |
#### 2.4 表是否存在
| cases | expected |
| ----------------------- | ------------ |
| 存在表,调用has_table | assert true |
| 不存在表,调用has_table | assert false |
| | |
#### 2.5 查询表记录条数
| cases | expected |
| -------------------- | ------------------------ |
| 空表 | 0 |
| 空表插入数据(单条) | 1 |
| 空表插入数据(多条) | assert length of vectors |
#### 2.6 查询表数量
| cases | expected |
| --------------------------------------------- | -------------------------------- |
| 两张表,一张空表,一张有数据:调用show tables | assert length of table list == 2 |
| | |
### 3. Add vectors
| interfaces | cases | expected |
| ----------- | --------------------------------------------------------- | ------------------------------------ |
| add_vectors | add basic | assert length of ids == nq |
| | add vectors into table not existed | status fail |
| | dim not match: single vector | status fail |
| | dim not match: vector list | status fail |
| | single vector element empty | status fail |
| | vector list element empty | status fail |
| | query immediately after adding | status pass |
| | query immediately after sleep 6s | status pass && length of result == 1 |
| | concurrent add with multi threads(share one connection) | status pass |
| | concurrent add with multi threads(independent connection) | status pass |
| | concurrent add with multi process(independent connection) | status pass |
| | index_type: 2 | status pass |
| | index_type: string | raise error |
| | | |
### 4. Search vectors
| interfaces | cases | expected |
| -------------- | ------------------------------------------------- | -------------------------------- |
| search_vectors | search basic(query vector in vectors, top-k<nq) | assert length of result == nq |
| | search vectors into table not existed | status fail |
| | basic top-k | score of query vectors == 100.0 |
| | invalid top-k: 0 | raise error |
| | invalid top-k: -1 | raise error |
| | invalid top-k: "string" | raise error |
| | top-k > nq | assert length of result == nq |
| | concurrent search | status pass |
| | query_range(get_current_day(), get_current_day()) | assert length of result == nq |
| | invalid query_range: "" | raise error |
| | query_range(get_last_day(2), get_last_day(1)) | assert length of result == 0 |
| | query_range(get_last_day(2), get_current_day()) | assert length of result == nq |
| | query_range((get_last_day(2), get_next_day(2)) | assert length of result == nq |
| | query_range((get_current_day(), get_next_day(2)) | assert length of result == nq |
| | query_range(get_next_day(1), get_next_day(2)) | assert length of result == 0 |
| | score: vector[i] = vector[i]+-0.01 | score > 99.9 |
\ No newline at end of file
# Requirements
* python 3.6.8
# How to use this Test Project
```shell
pytest . -q -v
```
with allure test report
```shell
pytest --alluredir=test_out . -q -v
allure serve test_out
```
# Contribution getting started
* Follow PEP-8 for naming and black for formatting.
\ No newline at end of file
* GLOBAL:
FORMAT = "%datetime | %level | %logger | %msg"
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-global.log"
ENABLED = true
TO_FILE = true
TO_STANDARD_OUTPUT = false
SUBSECOND_PRECISION = 3
PERFORMANCE_TRACKING = false
MAX_LOG_FILE_SIZE = 209715200 ## Throw log files away after 200MB
* DEBUG:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-debug.log"
ENABLED = true
* WARNING:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-warning.log"
* TRACE:
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-trace.log"
* VERBOSE:
FORMAT = "%datetime{%d/%M/%y} | %level-%vlevel | %msg"
TO_FILE = false
TO_STANDARD_OUTPUT = false
## Error logs
* ERROR:
ENABLED = true
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-error.log"
* FATAL:
ENABLED = true
FILENAME = "/opt/milvus/logs/milvus-%datetime{%H:%m}-fatal.log"
server_config:
address: 0.0.0.0
port: 19530
deploy_mode: single
time_zone: UTC+8
db_config:
primary_path: /opt/milvus
secondary_path:
backend_url: sqlite://:@:/
insert_buffer_size: 4
build_index_gpu: 0
preload_table:
metric_config:
enable_monitor: true
collector: prometheus
prometheus_config:
port: 8080
cache_config:
cpu_cache_capacity: 8
cpu_cache_threshold: 0.85
cache_insert_data: false
engine_config:
use_blas_threshold: 20
resource_config:
resource_pool:
- cpu
- gpu0
此差异已折叠。
#!/bin/bash
set -e
if [ "$1" = 'start' ]; then
tail -f /dev/null
fi
exec "$@"
\ No newline at end of file
[pytest]
log_format = [%(asctime)s-%(levelname)s-%(name)s]: %(message)s (%(filename)s:%(lineno)s)
log_cli = true
log_level = 20
timeout = 300
level = 1
\ No newline at end of file
astroid==2.2.5
atomicwrites==1.3.0
attrs==19.1.0
importlib-metadata==0.15
isort==4.3.20
lazy-object-proxy==1.4.1
mccabe==0.6.1
more-itertools==7.0.0
numpy==1.16.3
pluggy==0.12.0
py==1.8.0
pylint==2.3.1
pytest==4.5.0
pytest-timeout==1.3.3
pytest-repeat==0.8.0
allure-pytest==2.7.0
pytest-print==0.1.2
pytest-level==0.1.1
six==1.12.0
thrift==0.11.0
typed-ast==1.3.5
wcwidth==0.1.7
wrapt==1.11.1
zipp==0.5.1
pymilvus-test>=0.2.0
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册