提交 90c1eae6 编写于 作者: P peng.xu

Merge branch 'branch-0.4.0' into 'branch-0.4.0'

MS-528 Hide some config used future

See merge request megasearch/milvus!518

Former-commit-id: 74f6c56d57fe7390b83f0145a5ea8b53dcaa0c4d
......@@ -104,6 +104,9 @@ Please mark all change in change log and use the ticket from JIRA.
- MS-519 - Add event_test in scheduler
- MS-520 - Update resource_test in scheduler
- MS-524 - Add some unittest in event_test and resource_test
- MS-525 - Disable parallel reduce in SearchTask
- MS-527 - Update scheduler_test and enable it
- MS-528 - Hide some config used future
## New Feature
- MS-343 - Implement ResourceMgr
......
......@@ -48,51 +48,38 @@ resource_config:
# example:
# resource_name: # resource name, just using in connections below
# type: DISK # resource type, optional: DISK/CPU/GPU
# memory: 256 # memory size, unit: GB
# device_id: 0
# enable_loader: true # if is enable loader, optional: true, false
# enable_executor: false # if is enable executor, optional: true, false
resources:
ssda:
type: DISK
memory: 2048
device_id: 0
enable_loader: true
enable_executor: false
cpu:
type: CPU
memory: 64
device_id: 0
enable_loader: true
enable_executor: false
gpu0:
type: GPU
memory: 6
device_id: 0
enable_loader: true
enable_executor: true
gpu_resource_num: 2
pinned_memory: 300
temp_memory: 300
# gtx1660:
# type: GPU
# memory: 6
# device_id: 1
# enable_loader: true
# enable_executor: true
# connection list, length: 0~N
# format: -${resource_name}===${resource_name}
# example:
# connection_name:
# speed: 100 # unit: MS/s
# endpoint: ${resource_name}===${resource_name}
connections:
io:
speed: 500
endpoint: ssda===cpu
pcie:
pcie0:
speed: 11000
endpoint: cpu===gpu0
# - cpu===gtx1660
......@@ -36,7 +36,8 @@ StartSchedulerService() {
auto type = resconf.GetValue(server::CONFIG_RESOURCE_TYPE);
// auto memory = resconf.GetInt64Value(server::CONFIG_RESOURCE_MEMORY);
auto device_id = resconf.GetInt64Value(server::CONFIG_RESOURCE_DEVICE_ID);
auto enable_loader = resconf.GetBoolValue(server::CONFIG_RESOURCE_ENABLE_LOADER);
// auto enable_loader = resconf.GetBoolValue(server::CONFIG_RESOURCE_ENABLE_LOADER);
auto enable_loader = true;
auto enable_executor = resconf.GetBoolValue(server::CONFIG_RESOURCE_ENABLE_EXECUTOR);
auto pinned_memory = resconf.GetInt64Value(server::CONFIG_RESOURCE_PIN_MEMORY);
auto temp_memory = resconf.GetInt64Value(server::CONFIG_RESOURCE_TEMP_MEMORY);
......
......@@ -20,47 +20,47 @@ namespace engine {
static constexpr size_t PARALLEL_REDUCE_THRESHOLD = 10000;
static constexpr size_t PARALLEL_REDUCE_BATCH = 1000;
bool
NeedParallelReduce(uint64_t nq, uint64_t topk) {
server::ServerConfig &config = server::ServerConfig::GetInstance();
server::ConfigNode &db_config = config.GetConfig(server::CONFIG_DB);
bool need_parallel = db_config.GetBoolValue(server::CONFIG_DB_PARALLEL_REDUCE, false);
if (!need_parallel) {
return false;
}
return nq * topk >= PARALLEL_REDUCE_THRESHOLD;
}
void
ParallelReduce(std::function<void(size_t, size_t)> &reduce_function, size_t max_index) {
size_t reduce_batch = PARALLEL_REDUCE_BATCH;
auto thread_count = std::thread::hardware_concurrency() - 1; //not all core do this work
if (thread_count > 0) {
reduce_batch = max_index / thread_count + 1;
}
ENGINE_LOG_DEBUG << "use " << thread_count <<
" thread parallelly do reduce, each thread process " << reduce_batch << " vectors";
std::vector<std::shared_ptr<std::thread> > thread_array;
size_t from_index = 0;
while (from_index < max_index) {
size_t to_index = from_index + reduce_batch;
if (to_index > max_index) {
to_index = max_index;
}
auto reduce_thread = std::make_shared<std::thread>(reduce_function, from_index, to_index);
thread_array.push_back(reduce_thread);
from_index = to_index;
}
for (auto &thread_ptr : thread_array) {
thread_ptr->join();
}
}
//bool
//NeedParallelReduce(uint64_t nq, uint64_t topk) {
// server::ServerConfig &config = server::ServerConfig::GetInstance();
// server::ConfigNode &db_config = config.GetConfig(server::CONFIG_DB);
// bool need_parallel = db_config.GetBoolValue(server::CONFIG_DB_PARALLEL_REDUCE, false);
// if (!need_parallel) {
// return false;
// }
//
// return nq * topk >= PARALLEL_REDUCE_THRESHOLD;
//}
//
//void
//ParallelReduce(std::function<void(size_t, size_t)> &reduce_function, size_t max_index) {
// size_t reduce_batch = PARALLEL_REDUCE_BATCH;
//
// auto thread_count = std::thread::hardware_concurrency() - 1; //not all core do this work
// if (thread_count > 0) {
// reduce_batch = max_index / thread_count + 1;
// }
// ENGINE_LOG_DEBUG << "use " << thread_count <<
// " thread parallelly do reduce, each thread process " << reduce_batch << " vectors";
//
// std::vector<std::shared_ptr<std::thread> > thread_array;
// size_t from_index = 0;
// while (from_index < max_index) {
// size_t to_index = from_index + reduce_batch;
// if (to_index > max_index) {
// to_index = max_index;
// }
//
// auto reduce_thread = std::make_shared<std::thread>(reduce_function, from_index, to_index);
// thread_array.push_back(reduce_thread);
//
// from_index = to_index;
// }
//
// for (auto &thread_ptr : thread_array) {
// thread_ptr->join();
// }
//}
void
CollectFileMetrics(int file_type, size_t file_size) {
......@@ -238,11 +238,11 @@ Status XSearchTask::ClusterResult(const std::vector<long> &output_ids,
}
};
if (NeedParallelReduce(nq, topk)) {
ParallelReduce(reduce_worker, nq);
} else {
// if (NeedParallelReduce(nq, topk)) {
// ParallelReduce(reduce_worker, nq);
// } else {
reduce_worker(0, nq);
}
// }
return Status::OK();
}
......@@ -343,11 +343,11 @@ Status XSearchTask::TopkResult(SearchContext::ResultSet &result_src,
}
};
if (NeedParallelReduce(result_src.size(), topk)) {
ParallelReduce(ReduceWorker, result_src.size());
} else {
// if (NeedParallelReduce(result_src.size(), topk)) {
// ParallelReduce(ReduceWorker, result_src.size());
// } else {
ReduceWorker(0, result_src.size());
}
// }
return Status::OK();
}
......
......@@ -6,6 +6,7 @@
#include "scheduler/Scheduler.h"
#include <gtest/gtest.h>
#include <src/scheduler/tasklabel/DefaultLabel.h>
#include <src/server/ServerConfig.h>
#include "cache/DataObj.h"
#include "cache/GpuCacheMgr.h"
#include "scheduler/task/TestTask.h"
......@@ -15,233 +16,238 @@
#include "wrapper/knowhere/vec_index.h"
#include "scheduler/tasklabel/SpecResLabel.h"
namespace zilliz {
namespace milvus {
namespace engine {
//class MockVecIndex : public engine::VecIndex {
//public:
// virtual server::KnowhereError BuildAll(const long &nb,
// const float *xb,
// const long *ids,
// const engine::Config &cfg,
// const long &nt = 0,
// const float *xt = nullptr) {
//
// }
//
// engine::VecIndexPtr Clone() override {
// return zilliz::milvus::engine::VecIndexPtr();
// }
//
// int64_t GetDeviceId() override {
// return 0;
// }
//
// engine::IndexType GetType() override {
// return engine::IndexType::INVALID;
// }
//
// virtual server::KnowhereError Add(const long &nb,
// const float *xb,
// const long *ids,
// const engine::Config &cfg = engine::Config()) {
//
// }
//
// virtual server::KnowhereError Search(const long &nq,
// const float *xq,
// float *dist,
// long *ids,
// const engine::Config &cfg = engine::Config()) {
//
// }
//
// engine::VecIndexPtr CopyToGpu(const int64_t &device_id, const engine::Config &cfg) override {
//
// }
//
// engine::VecIndexPtr CopyToCpu(const engine::Config &cfg) override {
//
// }
//
// virtual int64_t Dimension() {
// return dimension_;
// }
//
// virtual int64_t Count() {
// return ntotal_;
// }
//
// virtual zilliz::knowhere::BinarySet Serialize() {
// zilliz::knowhere::BinarySet binset;
// return binset;
// }
//
// virtual server::KnowhereError Load(const zilliz::knowhere::BinarySet &index_binary) {
//
// }
//
//public:
// int64_t dimension_ = 512;
// int64_t ntotal_ = 0;
//};
//
//
//class SchedulerTest : public testing::Test {
//protected:
// void
// SetUp() override {
// ResourcePtr cpu = ResourceFactory::Create("cpu", "CPU", 0, true, false);
// ResourcePtr gpu_0 = ResourceFactory::Create("gpu0", "GPU", 0);
// ResourcePtr gpu_1 = ResourceFactory::Create("gpu1", "GPU", 1);
//
// res_mgr_ = std::make_shared<ResourceMgr>();
// cpu_resource_ = res_mgr_->Add(std::move(cpu));
// gpu_resource_0_ = res_mgr_->Add(std::move(gpu_0));
// gpu_resource_1_ = res_mgr_->Add(std::move(gpu_1));
//
// auto PCIE = Connection("IO", 11000.0);
// res_mgr_->Connect("cpu", "gpu0", PCIE);
// res_mgr_->Connect("cpu", "gpu1", PCIE);
//
// scheduler_ = std::make_shared<Scheduler>(res_mgr_);
//
// res_mgr_->Start();
// scheduler_->Start();
// }
//
// void
// TearDown() override {
// scheduler_->Stop();
// res_mgr_->Stop();
// }
//
// ResourceWPtr cpu_resource_;
// ResourceWPtr gpu_resource_0_;
// ResourceWPtr gpu_resource_1_;
//
// ResourceMgrPtr res_mgr_;
// std::shared_ptr<Scheduler> scheduler_;
//};
//
//void
//insert_dummy_index_into_gpu_cache(uint64_t device_id) {
// MockVecIndex* mock_index = new MockVecIndex();
// mock_index->ntotal_ = 1000;
// engine::VecIndexPtr index(mock_index);
//
// cache::DataObjPtr obj = std::make_shared<cache::DataObj>(index);
//
// cache::GpuCacheMgr::GetInstance(device_id)->InsertItem("location",obj);
//}
//
//TEST_F(SchedulerTest, OnCopyCompleted) {
// const uint64_t NUM = 10;
// std::vector<std::shared_ptr<TestTask>> tasks;
// TableFileSchemaPtr dummy = std::make_shared<meta::TableFileSchema>();
// dummy->location_ = "location";
//
// insert_dummy_index_into_gpu_cache(1);
//
// for (uint64_t i = 0; i < NUM; ++i) {
// auto task = std::make_shared<TestTask>(dummy);
// task->label() = std::make_shared<DefaultLabel>();
// tasks.push_back(task);
// cpu_resource_.lock()->task_table().Put(task);
// }
//
// sleep(3);
class MockVecIndex : public engine::VecIndex {
public:
virtual ErrorCode BuildAll(const long &nb,
const float *xb,
const long *ids,
const engine::Config &cfg,
const long &nt = 0,
const float *xt = nullptr) {
}
engine::VecIndexPtr Clone() override {
return zilliz::milvus::engine::VecIndexPtr();
}
int64_t GetDeviceId() override {
return 0;
}
engine::IndexType GetType() override {
return engine::IndexType::INVALID;
}
virtual ErrorCode Add(const long &nb,
const float *xb,
const long *ids,
const engine::Config &cfg = engine::Config()) {
}
virtual ErrorCode Search(const long &nq,
const float *xq,
float *dist,
long *ids,
const engine::Config &cfg = engine::Config()) {
}
engine::VecIndexPtr CopyToGpu(const int64_t &device_id, const engine::Config &cfg) override {
}
engine::VecIndexPtr CopyToCpu(const engine::Config &cfg) override {
}
virtual int64_t Dimension() {
return dimension_;
}
virtual int64_t Count() {
return ntotal_;
}
virtual zilliz::knowhere::BinarySet Serialize() {
zilliz::knowhere::BinarySet binset;
return binset;
}
virtual ErrorCode Load(const zilliz::knowhere::BinarySet &index_binary) {
}
public:
int64_t dimension_ = 512;
int64_t ntotal_ = 0;
};
class SchedulerTest : public testing::Test {
protected:
void
SetUp() override {
server::ConfigNode& config = server::ServerConfig::GetInstance().GetConfig(server::CONFIG_CACHE);
config.AddSequenceItem(server::CONFIG_GPU_IDS, "0");
config.AddSequenceItem(server::CONFIG_GPU_IDS, "1");
ResourcePtr cpu = ResourceFactory::Create("cpu", "CPU", 0, true, false);
ResourcePtr gpu_0 = ResourceFactory::Create("gpu0", "GPU", 0);
ResourcePtr gpu_1 = ResourceFactory::Create("gpu1", "GPU", 1);
res_mgr_ = std::make_shared<ResourceMgr>();
cpu_resource_ = res_mgr_->Add(std::move(cpu));
gpu_resource_0_ = res_mgr_->Add(std::move(gpu_0));
gpu_resource_1_ = res_mgr_->Add(std::move(gpu_1));
auto PCIE = Connection("IO", 11000.0);
res_mgr_->Connect("cpu", "gpu0", PCIE);
res_mgr_->Connect("cpu", "gpu1", PCIE);
scheduler_ = std::make_shared<Scheduler>(res_mgr_);
res_mgr_->Start();
scheduler_->Start();
}
void
TearDown() override {
scheduler_->Stop();
res_mgr_->Stop();
}
ResourceWPtr cpu_resource_;
ResourceWPtr gpu_resource_0_;
ResourceWPtr gpu_resource_1_;
ResourceMgrPtr res_mgr_;
std::shared_ptr<Scheduler> scheduler_;
};
void
insert_dummy_index_into_gpu_cache(uint64_t device_id) {
MockVecIndex *mock_index = new MockVecIndex();
mock_index->ntotal_ = 1000;
engine::VecIndexPtr index(mock_index);
cache::DataObjPtr obj = std::make_shared<cache::DataObj>(index);
cache::GpuCacheMgr::GetInstance(device_id)->InsertItem("location", obj);
}
TEST_F(SchedulerTest, OnLoadCompleted) {
const uint64_t NUM = 10;
std::vector<std::shared_ptr<TestTask>> tasks;
TableFileSchemaPtr dummy = std::make_shared<meta::TableFileSchema>();
dummy->location_ = "location";
insert_dummy_index_into_gpu_cache(1);
for (uint64_t i = 0; i < NUM; ++i) {
auto task = std::make_shared<TestTask>(dummy);
task->label() = std::make_shared<DefaultLabel>();
tasks.push_back(task);
cpu_resource_.lock()->task_table().Put(task);
}
sleep(3);
ASSERT_EQ(res_mgr_->GetResource(ResourceType::GPU, 1)->task_table().Size(), NUM);
}
TEST_F(SchedulerTest, PushTaskToNeighbourRandomlyTest) {
const uint64_t NUM = 10;
std::vector<std::shared_ptr<TestTask>> tasks;
TableFileSchemaPtr dummy1 = std::make_shared<meta::TableFileSchema>();
dummy1->location_ = "location";
tasks.clear();
for (uint64_t i = 0; i < NUM; ++i) {
auto task = std::make_shared<TestTask>(dummy1);
task->label() = std::make_shared<DefaultLabel>();
tasks.push_back(task);
cpu_resource_.lock()->task_table().Put(task);
}
sleep(3);
// ASSERT_EQ(res_mgr_->GetResource(ResourceType::GPU, 1)->task_table().Size(), NUM);
//
//}
//
//TEST_F(SchedulerTest, PushTaskToNeighbourRandomlyTest) {
// const uint64_t NUM = 10;
// std::vector<std::shared_ptr<TestTask>> tasks;
// TableFileSchemaPtr dummy1 = std::make_shared<meta::TableFileSchema>();
// dummy1->location_ = "location";
//
// tasks.clear();
//
// for (uint64_t i = 0; i < NUM; ++i) {
// auto task = std::make_shared<TestTask>(dummy1);
// task->label() = std::make_shared<DefaultLabel>();
// tasks.push_back(task);
// cpu_resource_.lock()->task_table().Put(task);
// }
//
// sleep(3);
//// ASSERT_EQ(res_mgr_->GetResource(ResourceType::GPU, 1)->task_table().Size(), NUM);
//}
//
//class SchedulerTest2 : public testing::Test {
// protected:
// void
// SetUp() override {
// ResourcePtr disk = ResourceFactory::Create("disk", "DISK", 0, true, false);
// ResourcePtr cpu0 = ResourceFactory::Create("cpu0", "CPU", 0, true, false);
// ResourcePtr cpu1 = ResourceFactory::Create("cpu1", "CPU", 1, true, false);
// ResourcePtr cpu2 = ResourceFactory::Create("cpu2", "CPU", 2, true, false);
// ResourcePtr gpu0 = ResourceFactory::Create("gpu0", "GPU", 0, true, true);
// ResourcePtr gpu1 = ResourceFactory::Create("gpu1", "GPU", 1, true, true);
//
// res_mgr_ = std::make_shared<ResourceMgr>();
// disk_ = res_mgr_->Add(std::move(disk));
// cpu_0_ = res_mgr_->Add(std::move(cpu0));
// cpu_1_ = res_mgr_->Add(std::move(cpu1));
// cpu_2_ = res_mgr_->Add(std::move(cpu2));
// gpu_0_ = res_mgr_->Add(std::move(gpu0));
// gpu_1_ = res_mgr_->Add(std::move(gpu1));
// auto IO = Connection("IO", 5.0);
// auto PCIE1 = Connection("PCIE", 11.0);
// auto PCIE2 = Connection("PCIE", 20.0);
// res_mgr_->Connect("disk", "cpu0", IO);
// res_mgr_->Connect("cpu0", "cpu1", IO);
// res_mgr_->Connect("cpu1", "cpu2", IO);
// res_mgr_->Connect("cpu0", "cpu2", IO);
// res_mgr_->Connect("cpu1", "gpu0", PCIE1);
// res_mgr_->Connect("cpu2", "gpu1", PCIE2);
//
// scheduler_ = std::make_shared<Scheduler>(res_mgr_);
//
// res_mgr_->Start();
// scheduler_->Start();
// }
//
// void
// TearDown() override {
// scheduler_->Stop();
// res_mgr_->Stop();
// }
//
// ResourceWPtr disk_;
// ResourceWPtr cpu_0_;
// ResourceWPtr cpu_1_;
// ResourceWPtr cpu_2_;
// ResourceWPtr gpu_0_;
// ResourceWPtr gpu_1_;
// ResourceMgrPtr res_mgr_;
//
// std::shared_ptr<Scheduler> scheduler_;
//};
//
//
//TEST_F(SchedulerTest2, SpecifiedResourceTest) {
// const uint64_t NUM = 10;
// std::vector<std::shared_ptr<TestTask>> tasks;
// TableFileSchemaPtr dummy = std::make_shared<meta::TableFileSchema>();
// dummy->location_ = "location";
//
// for (uint64_t i = 0; i < NUM; ++i) {
// std::shared_ptr<TestTask> task = std::make_shared<TestTask>(dummy);
// task->label() = std::make_shared<SpecResLabel>(disk_);
// tasks.push_back(task);
// disk_.lock()->task_table().Put(task);
// }
//
//// ASSERT_EQ(res_mgr_->GetResource(ResourceType::GPU, 1)->task_table().Size(), NUM);
//}
}
class SchedulerTest2 : public testing::Test {
protected:
void
SetUp() override {
ResourcePtr disk = ResourceFactory::Create("disk", "DISK", 0, true, false);
ResourcePtr cpu0 = ResourceFactory::Create("cpu0", "CPU", 0, true, false);
ResourcePtr cpu1 = ResourceFactory::Create("cpu1", "CPU", 1, true, false);
ResourcePtr cpu2 = ResourceFactory::Create("cpu2", "CPU", 2, true, false);
ResourcePtr gpu0 = ResourceFactory::Create("gpu0", "GPU", 0, true, true);
ResourcePtr gpu1 = ResourceFactory::Create("gpu1", "GPU", 1, true, true);
res_mgr_ = std::make_shared<ResourceMgr>();
disk_ = res_mgr_->Add(std::move(disk));
cpu_0_ = res_mgr_->Add(std::move(cpu0));
cpu_1_ = res_mgr_->Add(std::move(cpu1));
cpu_2_ = res_mgr_->Add(std::move(cpu2));
gpu_0_ = res_mgr_->Add(std::move(gpu0));
gpu_1_ = res_mgr_->Add(std::move(gpu1));
auto IO = Connection("IO", 5.0);
auto PCIE1 = Connection("PCIE", 11.0);
auto PCIE2 = Connection("PCIE", 20.0);
res_mgr_->Connect("disk", "cpu0", IO);
res_mgr_->Connect("cpu0", "cpu1", IO);
res_mgr_->Connect("cpu1", "cpu2", IO);
res_mgr_->Connect("cpu0", "cpu2", IO);
res_mgr_->Connect("cpu1", "gpu0", PCIE1);
res_mgr_->Connect("cpu2", "gpu1", PCIE2);
scheduler_ = std::make_shared<Scheduler>(res_mgr_);
res_mgr_->Start();
scheduler_->Start();
}
void
TearDown() override {
scheduler_->Stop();
res_mgr_->Stop();
}
ResourceWPtr disk_;
ResourceWPtr cpu_0_;
ResourceWPtr cpu_1_;
ResourceWPtr cpu_2_;
ResourceWPtr gpu_0_;
ResourceWPtr gpu_1_;
ResourceMgrPtr res_mgr_;
std::shared_ptr<Scheduler> scheduler_;
};
TEST_F(SchedulerTest2, SpecifiedResourceTest) {
const uint64_t NUM = 10;
std::vector<std::shared_ptr<TestTask>> tasks;
TableFileSchemaPtr dummy = std::make_shared<meta::TableFileSchema>();
dummy->location_ = "location";
for (uint64_t i = 0; i < NUM; ++i) {
std::shared_ptr<TestTask> task = std::make_shared<TestTask>(dummy);
task->label() = std::make_shared<SpecResLabel>(disk_);
tasks.push_back(task);
disk_.lock()->task_table().Put(task);
}
// ASSERT_EQ(res_mgr_->GetResource(ResourceType::GPU, 1)->task_table().Size(), NUM);
}
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册