未验证 提交 f7d74d53 编写于 作者: W wuzhihua 提交者: GitHub

Merge branch 'master' into fix_customer_reader

...@@ -13,6 +13,7 @@ cd paddle-rec ...@@ -13,6 +13,7 @@ cd paddle-rec
python -m paddlerec.run -m models/treebased/tdm/config.yaml python -m paddlerec.run -m models/treebased/tdm/config.yaml
``` ```
3. 建树及自定义训练的细节可以查阅[TDM-Demo建树及训练](./gen_tree/README.md)
## 树结构的准备 ## 树结构的准备
### 名词概念 ### 名词概念
......
wget https://paddlerec.bj.bcebos.com/utils/tree_build_utils.tar.gz --no-check-certificate
# input_path: embedding的路径
# emb_shape: embedding中key-value,value的维度
# emb格式要求: embedding_id(int64),embedding(float),embedding(float),......,embedding(float)
# cluster_threads: 建树聚类所用线程
python_172_anytree/bin/python -u main.py --input_path=./gen_emb/item_emb.txt --output_path=./ --emb_shape=24 --cluster_threads=4
建树流程是:1、读取emb -> 2、kmeans聚类 -> 3、聚类结果整理为树 -> 4、基于树结构得到模型所需的4个文件
1 Layer_list:记录了每一层都有哪些节点。训练用
2 Travel_list:记录每个叶子节点的Travel路径。训练用
3 Tree_Info:记录了每个节点的信息,主要为:是否是item/item_id,所在层级,父节点,子节点。检索用
4 Tree_Embedding:记录所有节点的Embedding。训练及检索用
注意一下训练数据输入的item是建树之前用的item id,还是基于树的node id,还是基于叶子的leaf id,在tdm_reader.py中,可以加载字典,做映射。
用厂内版建树得到的输出文件夹里,有名为id2nodeid.txt的映射文件,格式是『hash值』+ 『树节点ID』+『叶子节点ID(表示第几个叶子节点,tdm_sampler op 所需的输入)』
在另一个id2bidword.txt中,也有映射关系,格式是『hash值』+『原始item ID』,这个文件中仅存储了叶子节点的信息。
...@@ -59,49 +59,39 @@ hyper_parameters: ...@@ -59,49 +59,39 @@ hyper_parameters:
tree_emb_path: "{workspace}/tree/tree_emb.npy" tree_emb_path: "{workspace}/tree/tree_emb.npy"
# select runner by name # select runner by name
mode: runner1 mode: [runner1]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner: runner:
- name: runner1 - name: runner1
class: train class: train
startup_class_path: "{workspace}/tdm_startup.py" startup_class_path: "{workspace}/tdm_startup.py"
# num of epochs
epochs: 10 epochs: 10
# device to run training or infer
device: cpu device: cpu
save_checkpoint_interval: 2 # save model interval of epochs save_checkpoint_interval: 2 # save model interval of epochs
save_inference_interval: 4 # save inference
save_checkpoint_path: "increment" # save checkpoint path save_checkpoint_path: "increment" # save checkpoint path
save_inference_path: "inference" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path init_model_path: "" # load model path
print_interval: 10 print_interval: 10
phases: [phase1]
- name: runner2 - name: runner2
class: infer class: infer
startup_class_path: "{workspace}/tdm_startup.py" startup_class_path: "{workspace}/tdm_startup.py"
# device to run training or infer
device: cpu device: cpu
init_model_path: "increment/0" # load model path init_model_path: "increment/0" # load model path
print_interval: 1 print_interval: 1
phases: [phase2]
- name: runner3 - name: runner3
class: local_cluster_train class: local_cluster_train
startup_class_path: "{workspace}/tdm_startup.py" startup_class_path: "{workspace}/tdm_startup.py"
fleet_mode: ps fleet_mode: ps
epochs: 10 epochs: 10
# device to run training or infer
device: cpu device: cpu
save_checkpoint_interval: 2 # save model interval of epochs save_checkpoint_interval: 2 # save model interval of epochs
save_inference_interval: 4 # save inference
save_checkpoint_path: "increment" # save checkpoint path save_checkpoint_path: "increment" # save checkpoint path
save_inference_path: "inference" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "init_model" # load model path init_model_path: "init_model" # load model path
print_interval: 10 print_interval: 10
phases: [phase1]
# runner will run all the phase in each epoch # runner will run all the phase in each epoch
phase: phase:
...@@ -109,7 +99,7 @@ phase: ...@@ -109,7 +99,7 @@ phase:
model: "{workspace}/model.py" # user-defined model model: "{workspace}/model.py" # user-defined model
dataset_name: dataset_train # select dataset by name dataset_name: dataset_train # select dataset by name
thread_num: 1 thread_num: 1
# - name: phase2 - name: phase2
# model: "{workspace}/model.py" model: "{workspace}/model.py"
# dataset_name: dataset_infer dataset_name: dataset_infer
# thread_num: 2 thread_num: 2
# TDM-Demo建树及训练
## 建树所需环境
Requirements:
- python >= 2.7
- paddlepaddle >= 1.7.2(建议1.7.2)
- paddle-rec (克隆github paddlerec,执行python setup.py install)
- sklearn
- anytree
## 建树流程
### 生成建树所需Embedding
- 生成Fake的emb
```shell
cd gen_tree
python -u emb_util.py
```
生成的emb维度是[13, 64],含义是共有13个item,每个item的embedding维度是64,生成的item_emb位于`gen_tree/item_emb.txt`
格式为`emb_value_0(float) 空格 emb_value_1(float) ... emb_value_63(float) \t item_id `
在demo中,要求item的编号从0开始,范围 [0, item_nums-1]
真实场景可以通过各种hash映射满足该要求
### 对Item_embedding进行聚类建树
执行
```shell
cd gen_tree
# emd_path: item_emb的地址
# emb_size: item_emb的第二个维度,即每个item的emb的size(示例中为64)
# threads: 多线程建树配置的线程数
# n_clusters: 最终建树为几叉树,此处设置为2叉树
python gen_tree.py --emd_path item_emb.txt --emb_size 64 --output_dir ./output --threads 1 --n_clusters 2
```
生成的训练所需树结构文件位于`gen_tree/output`
```shell
.
├── id2item.json # 树节点id到item id的映射表
├── layer_list.txt # 树的每个层级都有哪些节点
├── travel_list.npy # 每个item从根到叶子的遍历路径,按item顺序排序
├── travel_list.txt # 上个文件的明文txt
├── tree_embedding.txt # 所有节点按节点id排列组成的embedding
├── tree_emb.npy # 上个文件的.npy版本
├── tree_info.npy # 每个节点:是否对应item/父/层级/子节点,按节点顺序排列
├── tree_info.txt # 上个文件的明文txt
└── tree.pkl # 聚类得到的树结构
```
我们最终需要使用建树生成的以下四个文件,参与网络训练,参考`models/treebased/tdm/config.yaml`
1. layer_list.txt
2. travel_list.npy
3. tree_info.npy
4. tree_emb.npy
### 执行训练
- 更改`config.yaml`中的配置
首先更改
```yaml
hyper_parameters:
# ...
tree:
# 单机训练建议tree只load一次,保存为paddle tensor,之后从paddle模型热启
# 分布式训练trainer需要独立load
# 预测时也改为从paddle模型加载
load_tree_from_numpy: True # only once
load_paddle_model: False # train & infer need, after load from npy, change it to True
tree_layer_path: "{workspace}/tree/layer_list.txt"
tree_travel_path: "{workspace}/tree/travel_list.npy"
tree_info_path: "{workspace}/tree/tree_info.npy"
tree_emb_path: "{workspace}/tree/tree_emb.npy"
```
将上述几个path改为建树得到的文件所在的地址
再更改
```yaml
hyper_parameters:
max_layers: 4 # 不含根节点,树的层数
node_nums: 26 # 树共有多少个节点,数量与tree_info文件的行数相等
leaf_node_nums: 13 # 树共有多少个叶子节点
layer_node_num_list: [2, 4, 8, 10] # 树的每层有多少个节点
child_nums: 2 # 每个节点最多有几个孩子结点(几叉树)
neg_sampling_list: [1, 2, 3, 4] # 在树的每层做多少负采样,训练自定义的参数
```
若并不知道对上面几个参数具体值,可以试运行一下,paddlerec读取建树生成的文件后,会将具体信息打印到屏幕上,如下所示:
```shell
...
File_list: ['models/treebased/tdm/data/train/demo_fake_input.txt']
2020-09-10 15:17:19,259 - INFO - Run TDM Trainer Startup Pass
2020-09-10 15:17:19,283 - INFO - load tree from numpy
2020-09-10 15:17:19,284 - INFO - TDM Tree leaf node nums: 13
2020-09-10 15:17:19,284 - INFO - TDM Tree max layer: 4
2020-09-10 15:17:19,284 - INFO - TDM Tree layer_node_num_list: [2, 4, 8, 10]
2020-09-10 15:17:19,285 - INFO - Begin Save Init model.
2020-09-10 15:17:19,394 - INFO - End Save Init model.
Running SingleRunner.
...
```
将其抄到配置中即可
- 训练
执行
```
cd /PaddleRec # PaddleRec 克隆的根目录
python -m paddlerec.run -m models/treebased/tdm/config.yaml
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import cluster
__all__ = []
__all__ += cluster.__all__
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import codecs
import os
import time
import collections
import argparse
import multiprocessing as mp
import numpy as np
from sklearn.cluster import KMeans
import tree_builder
__all__ = ['Cluster']
class Cluster:
def __init__(self,
filename,
emb_size,
id_offset=None,
parall=16,
prev_result=None,
output_dir='./',
_n_clusters=2):
self.filename = filename
self.emb_size = emb_size
self.mini_batch = 256
self.ids = None
self.data = None
self.items = None
self.parall = parall
self.queue = None
self.timeout = 5
self.id_offset = id_offset
self.codes = None
self.prev_result = prev_result
self.output_dir = output_dir
self.n_clusters = _n_clusters
def _read(self):
t1 = time.time()
ids = list()
data = list()
items = list()
count = 0
with codecs.open(self.filename, 'r', encoding='utf-8') as f:
for line in f:
arr = line.rstrip().split('\t')
if not arr:
break
elif len(arr) == 1:
label = arr[0]
emb_vec = (np.random.random_sample(
(self.emb_size, ))).tolist()
elif len(arr) == 2:
label = arr[1]
emb_vec = arr[0].split()
if len(emb_vec) != self.emb_size:
continue
if label in items:
index = items.index(label)
for i in range(0, len(emb_vec)):
data[index][i + 1] += float(emb_vec[i])
data[index][0] += 1
else:
items.append(label)
ids.append(count)
count += 1
vector = list()
vector.append(1)
for i in range(0, len(emb_vec)):
vector.append(float(emb_vec[i]))
data.append(vector)
for i in range(len(data)):
data_len = len(data[0])
for j in range(1, data_len):
data[i][j] /= data[i][0]
data[i] = data[i][1:]
self.ids = np.array(ids)
self.data = np.array(data)
self.items = np.array(items)
t2 = time.time()
print("Read data done, {} records read, elapsed: {}".format(
len(ids), t2 - t1))
def train(self):
''' Cluster data '''
self._read()
queue = mp.Queue()
self.process_prev_result(queue)
processes = []
pipes = []
for _ in range(self.parall):
a, b = mp.Pipe()
p = mp.Process(target=self._train, args=(b, queue))
processes.append(p)
pipes.append(a)
p.start()
self.codes = np.zeros((len(self.ids), ), dtype=np.int64)
for pipe in pipes:
codes = pipe.recv()
for i in range(len(codes)):
if codes[i] > 0:
self.codes[i] = codes[i]
for p in processes:
p.join()
assert (queue.empty())
builder = tree_builder.TreeBuilder(self.output_dir, self.n_clusters)
builder.build(self.ids, self.codes, items=self.items, data=self.data)
def process_prev_result(self, queue):
if not self.prev_result:
queue.put((0, np.array(range(len(self.ids)))))
return True
di = dict()
for i, node_id in enumerate(self.ids):
di[node_id] = i
indexes = []
clusters = []
with open(self.prev_result) as f:
for line in f:
arr = line.split(",")
if arr < 2:
break
ni = [di[int(m)] for m in arr]
clusters.append(ni)
indexes += ni
assert len(set(indexes)) == len(self.ids), \
"ids count: {}, index count: {}".format(len(self.ids),
len(set(indexes)))
count = len(clusters)
assert (count & (count - 1)) == 0, \
"Prev cluster count: {}".format(count)
for i, ni in enumerate(clusters):
queue.put((i + count - 1, np.array(ni)))
return True
def _train(self, pipe, queue):
last_size = -1
catch_time = 0
processed = False
code = np.zeros((len(self.ids), ), dtype=np.int64)
while True:
for _ in range(3):
try:
pcode, index = queue.get(timeout=self.timeout)
except:
index = None
if index is not None:
break
if index is None:
if processed and (last_size <= self.mini_batch or
catch_time >= 3):
print("Process {} exits".format(os.getpid()))
break
else:
print("Got empty job, pid: {}, time: {}".format(os.getpid(
), catch_time))
catch_time += 1
continue
processed = True
catch_time = 0
last_size = len(index)
if last_size <= self.mini_batch:
self._minbatch(pcode, index, code)
else:
start = time.time()
sub_index = self._cluster(index)
if last_size > self.mini_batch:
print("Train iteration done, pcode:{}, "
"data size: {}, elapsed time: {}"
.format(pcode, len(index), time.time() - start))
self.timeout = int(0.4 * self.timeout + 0.6 * (time.time() -
start))
if self.timeout < 5:
self.timeout = 5
for i in range(self.n_clusters):
if len(sub_index[i]) > 1:
queue.put(
(self.n_clusters * pcode + i + 1, sub_index[i]))
process_count = 0
for c in code:
if c > 0:
process_count += 1
print("Process {} process {} items".format(os.getpid(), process_count))
pipe.send(code)
def _minbatch(self, pcode, index, code):
dq = collections.deque()
dq.append((pcode, index))
batch_size = len(index)
tstart = time.time()
while dq:
pcode, index = dq.popleft()
if len(index) <= self.n_clusters:
for i in range(len(index)):
code[index[i]] = self.n_clusters * pcode + i + 1
continue
sub_index = self._cluster(index)
for i in range(self.n_clusters):
if len(sub_index[i]) > 1:
dq.append((self.n_clusters * pcode + i + 1, sub_index[i]))
elif len(sub_index[i]) > 0:
for j in range(len(sub_index[i])):
code[sub_index[i][j]] = self.n_clusters * \
pcode + i + j + 1
print("Minbatch, batch size: {}, elapsed: {}".format(
batch_size, time.time() - tstart))
def _cluster(self, index):
data = self.data[index]
kmeans = KMeans(n_clusters=self.n_clusters, random_state=0).fit(data)
labels = kmeans.labels_
sub_indexes = []
remain_index = []
ave_num = len(index) / self.n_clusters
for i in range(self.n_clusters):
sub_i = np.where(labels == i)[0]
sub_index = index[sub_i]
if len(sub_index) <= ave_num:
sub_indexes.append(sub_index)
else:
distances = kmeans.transform(data[sub_i])[:, i]
sorted_index = sub_index[np.argsort(distances)]
sub_indexes.append(sorted_index[:ave_num])
remain_index.extend(list(sorted_index[ave_num:]))
idx = 0
while idx < self.n_clusters and len(remain_index) > 0:
if len(sub_indexes[idx]) >= ave_num:
idx += 1
else:
diff = min(len(remain_index), ave_num - len(sub_indexes[idx]))
sub_indexes[idx] = np.append(sub_indexes[idx],
np.array(remain_index[0:diff]))
remain_index = remain_index[diff:]
idx += 1
if len(remain_index) > 0:
sub_indexes[0] = np.append(sub_indexes[0], np.array(remain_index))
return sub_indexes
def _cluster1(self, index):
pass
def _rebalance(self, lindex, rindex, distances):
sorted_index = rindex[np.argsort(distances)]
idx = np.concatenate((lindex, sorted_index))
mid = int(len(idx) / 2)
return idx[mid:], idx[:mid]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Tree cluster")
parser.add_argument(
"--embed_file",
required=True,
help="filename of the embedded vector file")
parser.add_argument(
"--emb_size",
type=int,
default=64,
help="dimension of input embedded vector")
parser.add_argument(
"--id_offset",
default=None,
help="id offset of the generated tree internal node")
parser.add_argument(
"--parall",
type=int,
default=16,
help="Parall execution process number")
parser.add_argument(
"--prev_result",
default=None,
help="filename of the previous cluster reuslt")
argments = parser.parse_args()
t1 = time.time()
cluster = Cluster(argments.embed_file, argments.emb_size,
argments.id_offset, argments.parall,
argments.prev_result)
cluster.train()
t2 = time.time()
print("Train complete successfully, elapsed: {}".format(t2 - t1))
# -*- coding=utf8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.fluid as fluid
import numpy as np
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--mode",
default="create_fake_emb",
choices=["create_fake_emb", "save_item_emb"],
type=str,
help=".")
parser.add_argument("--emb_id_nums", default=13, type=int, help=".")
parser.add_argument("--emb_shape", default=64, type=int, help=".")
parser.add_argument("--emb_path", default='./item_emb.txt', type=str, help='.')
args = parser.parse_args()
def create_fake_emb(emb_id_nums, emb_shape, emb_path):
x = fluid.data(name="item", shape=[1], lod_level=1, dtype="int64")
# use layers.embedding to init emb value
item_emb = fluid.layers.embedding(
input=x,
is_sparse=True,
size=[emb_id_nums, emb_shape],
param_attr=fluid.ParamAttr(
name="Item_Emb",
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=2.0)))
# run startup to init emb tensor
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
# get np.array(emb_tensor)
print("Get Emb")
item_emb_array = np.array(fluid.global_scope().find_var("Item_Emb")
.get_tensor())
with open(emb_path, 'w+') as f:
emb_str = ""
for index, value in enumerate(item_emb_array):
line = []
for v in value:
line.append(str(v))
line_str = " ".join(line)
line_str += "\t"
line_str += str(index)
line_str += "\n"
emb_str += line_str
f.write(emb_str)
print("Item Emb write Finish")
if __name__ == "__main__":
create_fake_emb(args.emb_id_nums, args.emb_shape, args.emb_path)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from cluster import Cluster
import time
import argparse
from tree_search_util import tree_search_main
parser = argparse.ArgumentParser()
parser.add_argument("--emd_path", default='', type=str, help=".")
parser.add_argument("--emb_size", default=64, type=int, help=".")
parser.add_argument("--threads", default=1, type=int, help=".")
parser.add_argument("--n_clusters", default=3, type=int, help=".")
parser.add_argument("--output_dir", default='', type=str, help='.')
args = parser.parse_args()
def main():
cur_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
if not os.path.exists(args.output_dir):
os.system("mkdir -p " + args.output_dir)
print('%s start build tree' % cur_time)
# 1. Tree clustering, generating two files in current directory, tree.pkl, id2item.json
cluster = Cluster(
args.emd_path,
args.emb_size,
parall=args.threads,
output_dir=args.output_dir,
_n_clusters=args.n_clusters)
cluster.train()
# 2. Tree searching, generating tree_info, travel_list, layer_list for train process.
tree_search_main(
os.path.join(args.output_dir, "tree.pkl"),
os.path.join(args.output_dir, "id2item.json"), args.output_dir,
args.n_clusters)
if __name__ == "__main__":
main()
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import sys
import os
import codecs
from tree_impl import _build
_CUR_DIR = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(_CUR_DIR, ".."))
class TreeBuilder:
def __init__(self, output_dir='./', n_clusters=2):
self.output_dir = output_dir
self.n_clusters = n_clusters
def build(
self,
ids,
codes,
data=None,
items=None,
id_offset=None, ):
_build(ids, codes, data, items, self.output_dir, self.n_clusters)
def _ancessors(self, code):
ancs = []
while code > 0:
code = int((code - 1) / 2)
ancs.append(code)
return ancs
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from anytree import NodeMixin, RenderTree
import numpy as np
from anytree.exporter.dictexporter import DictExporter
import pickle
import json
import os
import time
class BaseClass(object):
pass
class TDMTreeClass(BaseClass, NodeMixin):
def __init__(self,
key_code,
emb_vec,
ids=None,
text=None,
parent=None,
children=None):
super(TDMTreeClass, self).__init__()
self.key_code = key_code
self.ids = ids
self.emb_vec = emb_vec
self.text = text
self.parent = parent
if children:
self.children = children
def set_parent(self, parent):
self.parent = parent
def set_children(self, children):
self.children = children
def _build(ids, codes, data, items, output_dir, n_clusters=2):
code_list = [0] * 50000000
node_dict = {}
max_code = 0
id2item = {}
curtime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
print('%s start gen code_list' % curtime)
for _id, code, datum, item in zip(ids, codes, data, items):
code_list[code] = [datum, _id]
id2item[str(_id)] = item
max_code = max(code, max_code)
ancessors = _ancessors(code, n_clusters)
for ancessor in ancessors:
code_list[ancessor] = [[]]
for code in range(max_code, -1, -1):
if code_list[code] == 0:
continue
if len(code_list[code]) > 1:
pass
elif len(code_list[code]) == 1:
code_list[code][0] = np.mean(code_list[code][0], axis=0)
if code > 0:
ancessor = int((code - 1) / n_clusters)
code_list[ancessor][0].append(code_list[code][0])
print('start gen node_dict')
for code in range(0, max_code + 1):
if code_list[code] == 0:
continue
if len(code_list[code]) > 1:
[datum, _id] = code_list[code]
node_dict[code] = TDMTreeClass(code, emb_vec=datum, ids=_id)
elif len(code_list[code]) == 1:
[datum] = code_list[code]
node_dict[code] = TDMTreeClass(code, emb_vec=datum)
if code > 0:
ancessor = int((code - 1) / n_clusters)
node_dict[code].set_parent(node_dict[ancessor])
save_tree(node_dict[0], os.path.join(output_dir, 'tree.pkl'))
save_dict(id2item, os.path.join(output_dir, 'id2item.json'))
def render(root):
for row in RenderTree(root, childiter=reversed):
print("%s%s" % (row.pre, row.node.text))
def save_tree(root, path):
print('save tree to %s' % path)
exporter = DictExporter()
data = exporter.export(root)
f = open(path, 'wb')
pickle.dump(data, f)
f.close()
def save_dict(dic, filename):
"""save dict into json file"""
print('save dict to %s' % filename)
with open(filename, "w") as json_file:
json.dump(dic, json_file, ensure_ascii=False)
def _ancessors(code, n_clusters):
ancs = []
while code > 0:
code = int((code - 1) / n_clusters)
ancs.append(code)
return ancs
# -*- coding=utf8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pickle
import time
import os
import numpy as np
from anytree import (AsciiStyle, LevelOrderGroupIter, LevelOrderIter, Node,
NodeMixin, RenderTree)
from anytree.importer.dictimporter import DictImporter
from anytree.iterators.abstractiter import AbstractIter
from anytree.walker import Walker
from tree_impl import TDMTreeClass
class myLevelOrderIter(AbstractIter):
@staticmethod
def _iter(children, filter_, stop, maxlevel):
level = 1
while children:
next_children = []
for child in children:
if filter_(child):
yield child, level
next_children += AbstractIter._get_children(child.children,
stop)
children = next_children
level += 1
if AbstractIter._abort_at_level(level, maxlevel):
break
class Tree_search(object):
def __init__(self, tree_path, id2item_path, child_num=2):
self.root = None
self.id2item = None
self.item2id = None
self.child_num = child_num
self.load(tree_path)
# self.load_id2item(id2item_path)
self.level_code = [[]]
self.max_level = 0
self.keycode_id_dict = {}
# embedding
self.keycode_nodeid_dict = {}
self.tree_info = []
self.id_node_dict = {}
self.get_keycode_mapping()
self.travel_tree()
self.get_children()
def get_keycode_mapping(self):
nodeid = 0
self.embedding = []
print("Begin Keycode Mapping")
for node in myLevelOrderIter(self.root):
node, level = node
if level - 1 > self.max_level:
self.max_level = level - 1
self.level_code.append([])
if node.ids is not None:
self.keycode_id_dict[node.key_code] = node.ids
self.id_node_dict[node.ids] = node
self.keycode_nodeid_dict[node.key_code] = nodeid
self.level_code[self.max_level].append(nodeid)
node_infos = []
if node.ids is not None: # item_id
node_infos.append(node.ids)
else:
node_infos.append(0)
node_infos.append(self.max_level) # layer_id
if node.parent: # ancestor_id
node_infos.append(self.keycode_nodeid_dict[
node.parent.key_code])
else:
node_infos.append(0)
self.tree_info.append(node_infos)
self.embedding.append(node.emb_vec)
nodeid += 1
if nodeid % 1000 == 0:
print("travel node id {}".format(nodeid))
def load(self, path):
print("Begin Load Tree")
f = open(path, "rb")
data = pickle.load(f)
pickle.dump(data, open(path, "wb"), protocol=2)
importer = DictImporter()
self.root = importer.import_(data)
f.close()
def load_id2item(self, path):
"""load dict from json file"""
with open(path, "rb") as json_file:
self.id2item = json.load(json_file)
self.item2id = {value: int(key) for key, value in self.id2item.items()}
def get_children(self):
"""get every node children info"""
print("Begin Keycode Mapping")
for node in myLevelOrderIter(self.root):
node, level = node
node_id = self.keycode_nodeid_dict[node.key_code]
child_idx = 0
if node.children:
for child in node.children:
self.tree_info[node_id].append(self.keycode_nodeid_dict[
child.key_code])
child_idx += 1
while child_idx < self.child_num:
self.tree_info[node_id].append(0)
child_idx += 1
if node_id % 1000 == 0:
print("get children node id {}".format(node_id))
def travel_tree(self):
self.travel_list = []
tree_walker = Walker()
print("Begin Travel Tree")
for item in sorted(self.id_node_dict.keys()):
node = self.id_node_dict[int(item)]
paths, _, _ = tree_walker.walk(node, self.root)
paths = list(paths)
paths.reverse()
travel = [self.keycode_nodeid_dict[i.key_code] for i in paths]
while len(travel) < self.max_level:
travel.append(0)
self.travel_list.append(travel)
def tree_search_main(tree_path, id2item_path, output_dir, n_clusters=2):
print("Begin Tree Search")
t = Tree_search(tree_path, id2item_path, n_clusters)
# 1. Walk all leaf nodes, get travel path array
travel_list = np.array(t.travel_list)
np.save(os.path.join(output_dir, "travel_list.npy"), travel_list)
with open(os.path.join(output_dir, "travel_list.txt"), 'w') as fout:
for i, travel in enumerate(t.travel_list):
travel = map(str, travel)
fout.write(','.join(travel))
fout.write("\n")
print("End Save tree travel")
# 2. Walk all layer of tree, get layer array
layer_num = 0
with open(os.path.join(output_dir, "layer_list.txt"), 'w') as fout:
for layer in t.level_code:
# exclude layer 0
if layer_num == 0:
layer_num += 1
continue
for idx in range(len(layer) - 1):
fout.write(str(layer[idx]) + ',')
fout.write(str(layer[-1]) + "\n")
print("Layer {} has {} node, the first {}, the last {}".format(
layer_num, len(layer), layer[0], layer[-1]))
layer_num += 1
print("End Save tree layer")
# 3. Walk all node of tree, get tree info
tree_info = np.array(t.tree_info)
np.save(os.path.join(output_dir, "tree_info.npy"), tree_info)
with open(os.path.join(output_dir, "tree_info.txt"), 'w') as fout:
for i, node_infos in enumerate(t.tree_info):
node_infos = map(str, node_infos)
fout.write(','.join(node_infos))
fout.write("\n")
print("End Save tree info")
# 4. save embedding
embedding = np.array(t.embedding)
np.save(os.path.join(output_dir, "tree_emb.npy"), embedding)
with open(os.path.join(output_dir, "tree_embedding.txt"), "w") as fout:
for i, emb in enumerate(t.embedding):
emb = map(str, emb)
fout.write(','.join(emb))
fout.write("\n")
if __name__ == "__main__":
tree_path = "./tree.pkl"
id2item_path = "./id2item.json"
output_dir = "./output"
if not os.path.exists(output_dir):
os.system("mkdir -p " + output_dir)
tree_search_main(tree_path, id2item_path, output_dir)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册