Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
f385e9ce
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f385e9ce
编写于
5月 27, 2020
作者:
X
xjqbest
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
43d49e3f
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
107 addition
and
179 deletion
+107
-179
core/model.py
core/model.py
+4
-14
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+49
-137
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+24
-18
core/utils/envs.py
core/utils/envs.py
+30
-9
models/rank/dnn/model.py
models/rank/dnn/model.py
+0
-1
未找到文件。
core/model.py
浏览文件 @
f385e9ce
...
...
@@ -134,18 +134,10 @@ class Model(object):
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
def
input_data
(
self
,
is_infer
=
False
,
dataset_name
=
None
,
program
=
None
):
dataset
=
{}
for
i
in
self
.
_env
[
"dataset"
]:
if
i
[
"name"
]
==
dataset_name
:
dataset
=
i
break
sparse_slots
=
dataset
.
get
(
"sparse_slots"
,
None
)
#sparse_slots =
#envs.get_global_env("sparse_slots", None,
# "train.reader")
#dense_slots = envs.get_global_env("dense_slots", None, "train.reader")
dense_slots
=
dataset
.
get
(
"dense_slots"
,
None
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
name
=
"dataset."
+
kwargs
.
get
(
"dataset_name"
)
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
...
...
@@ -168,8 +160,6 @@ class Model(object):
name
=
name
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
"int64"
)
data_var_
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
print
(
self
.
_dense_data_var
)
print
(
self
.
_sparse_data_var
)
return
data_var_
else
:
...
...
core/trainers/single_trainer.py
浏览文件 @
f385e9ce
...
...
@@ -36,7 +36,7 @@ class SingleTrainer(TranspileTrainer):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
#envs.get_global_envs()
#device = envs.get_global_env("train.device", "cpu")
device
=
self
.
_env
[
"device"
]
device
=
envs
.
get_global_env
(
"device"
)
#
self._env["device"]
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
...
...
@@ -45,6 +45,8 @@ class SingleTrainer(TranspileTrainer):
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
#self.inference_models = []
#self.increment_models = []
...
...
@@ -79,32 +81,46 @@ class SingleTrainer(TranspileTrainer):
# if self._env["hyper_parameters"]["optimizer"]["class"] == "Adam":
def
_create_dataset
(
self
,
dataset_name
):
config_dict
=
None
for
i
in
self
.
_env
[
"dataset"
]:
if
i
[
"name"
]
==
dataset_name
:
config_dict
=
i
break
#config_dict = envs.get_global_env("dataset." + dataset_name)
#
for i in self._env["dataset"]:
#
if i["name"] == dataset_name:
#
config_dict = i
#
break
#reader_ins = SlotReader(self._config_yaml)
sparse_slots
=
config_dict
[
"sparse_slots"
]
dense_slots
=
config_dict
[
"dense_slots"
]
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
#config_dict.get("sparse_slots")#config_dict["sparse_slots"]
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
#config_dict.get("dense_slots")#config_dict["dense_slots"]
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
padding
=
0
reader
=
envs
.
path_adapter
(
"paddlerec.core.utils"
)
+
"/dataset_instance.py"
#reader = "{workspace}/paddlerec/core/utils/dataset_instance.py".replace("{workspace}", envs.path_adapter(self._env["workspace"]))
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
if
config_dict
[
"type"
]
==
"QueueDataset"
:
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
config_dict
[
"type"
])
dataset
.
set_batch_size
(
config_dict
[
"batch_size"
])
#print(config_dict["type"])
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
type_name
==
"QueueDataset"
:
#if config_dict["type"] == "QueueDataset":
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
#dataset.set_thread(config_dict["thread_num"])
#dataset.set_hdfs_config(config_dict["data_fs_name"], config_dict["data_fs_ugi"])
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
config_dict
[
"data_path"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
#print(pipe_cmd)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
#config_dict["data_path"].replace("{workspace}", envs.path_adapter(self._env["workspace"]))
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
#print(file_list)
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
...
...
@@ -118,24 +134,21 @@ class SingleTrainer(TranspileTrainer):
return
dataset
def
init
(
self
,
context
):
#
self.model.train_net()
#
for model_dict in self._env["executor"]:
for
model_dict
in
self
.
_env
[
"executor"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
4
# self._model[model_dict["name"]][0] = fluid.Program() #train_program
# self._model[model_dict["name"]][1] = fluid.Program() #startup_program
# self._model[model_dict["name"]][2] = fluid.Scope() #scope
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
opt_name
=
self
.
_env
[
"hyper_parameters"
][
"optimizer"
][
"class"
]
opt_lr
=
self
.
_env
[
"hyper_parameters"
][
"optimizer"
][
"learning_rate"
]
opt_strategy
=
self
.
_env
[
"hyper_parameters"
][
"optimizer"
][
"strategy"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
model
.
net
(
None
)
####
model
.
net
(
None
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
...
...
@@ -146,19 +159,6 @@ class SingleTrainer(TranspileTrainer):
for
dataset
in
self
.
_env
[
"dataset"
]:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
# self.fetch_vars = []
# self.fetch_alias = []
# self.fetch_period = self.model.get_fetch_period()
# metrics = self.model.get_metrics()
# if metrics:
# self.fetch_vars = metrics.values()
# self.fetch_alias = metrics.keys()
#evaluate_only = envs.get_global_env(
# 'evaluate_only', False, namespace='evaluate')
#if evaluate_only:
# context['status'] = 'infer_pass'
#else:
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
...
...
@@ -172,62 +172,40 @@ class SingleTrainer(TranspileTrainer):
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"executor"
]:
reader_name
=
model_dict
[
"dataset_name"
]
#print(self._dataset)
#print(reader_name)
dataset
=
None
for
i
in
self
.
_env
[
"dataset"
]:
if
i
[
"name"
]
==
reader_name
:
dataset
=
i
break
if
dataset
[
"type"
]
==
"DataLoader"
:
#dataset = envs.get_global_env("dataset." + reader_name)
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
#if dataset["type"] == "DataLoader":
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
print
(
"epoch %s done"
%
j
)
# self._model[model_dict["name"]][1] = fluid.compiler.CompiledProgram(
# self._model[model_dict["name"]][1]).with_data_parallel(loss_name=self._model.get_avg_cost().name)
# fetch_vars = []
# fetch_alias = []
# fetch_period = self._model.get_fetch_period()
# metrics = self._model.get_metrics()
# if metrics:
# fetch_vars = metrics.values()
# fetch_alias = metrics.keys()
# metrics_varnames = []
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
# dataset = self._get_dataset("TRAIN")
# ins = self._get_dataset_ins()
# epochs = envs.get_global_env("train.epochs")
# for i in range(epochs):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
1
#model_class.get_fetch_period()
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
1
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
begin_time
=
time
.
time
()
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
#print("epoch {} using time {}".format(i, times))
#print("epoch {} using time {}, speed {:.2f} lines/s".format(
# i, times, ins / times))
def
_executor_dataloader_train
(
self
,
model_dict
):
...
...
@@ -238,8 +216,8 @@ class SingleTrainer(TranspileTrainer):
self
.
_model
[
model_name
][
1
]).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
self
.
_model
.
get_fetch_period
()
metrics
=
self
.
_model
.
get_metrics
()
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
...
...
@@ -252,52 +230,12 @@ class SingleTrainer(TranspileTrainer):
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_dataset
[
"reader_name"
]
reader
=
self
.
_dataset
[
reader_name
]
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
3
]
prorgram
=
self
.
_model
[
model_name
][
1
]
with
fluid
.
scope_guard
(
self
.
_model
[
model_name
][
3
]):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
self
.
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
dataloader_train
(
self
,
context
):
exit
(
-
1
)
reader
=
self
.
_get_dataloader
(
self
.
_env
[
"TRAIN"
])
epochs
=
self
.
_env
[
"epochs"
]
program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
self
.
model
.
get_avg_cost
().
name
)
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
self
.
model
.
get_metrics
().
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
for
epoch
in
range
(
epochs
):
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
prorgram
=
self
.
_model
[
model_name
][
0
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
...
...
@@ -311,32 +249,6 @@ class SingleTrainer(TranspileTrainer):
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
self
.
save
(
epoch
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
dataset_train
(
self
,
context
):
dataset
=
self
.
_get_dataset
(
"TRAIN"
)
ins
=
self
.
_get_dataset_ins
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
begin_time
=
time
.
time
()
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
terminal
(
self
,
context
):
#for model in self.increment_models:
# print("epoch :{}, dir: {}".format(model[0], model[1]))
context
[
'is_exit'
]
=
True
core/trainers/transpiler_trainer.py
浏览文件 @
f385e9ce
...
...
@@ -94,24 +94,30 @@ class TranspileTrainer(Trainer):
count
+=
1
return
count
def
_get_dataset
(
self
,
state
=
"TRAIN"
):
if
state
==
"TRAIN"
:
inputs
=
self
.
model
.
get_inputs
()
namespace
=
"train.reader"
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
namespace
)
else
:
inputs
=
self
.
model
.
get_infer_inputs
()
namespace
=
"evaluate.reader"
train_data_path
=
envs
.
get_global_env
(
"test_data_path"
,
None
,
namespace
)
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
namespace
)
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
namespace
)
threads
=
int
(
envs
.
get_runtime_environ
(
"train.trainer.threads"
))
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
namespace
)
reader_class
=
envs
.
get_global_env
(
"class"
,
None
,
namespace
)
#def _get_dataset(self, state="TRAIN"):
#if state == "TRAIN":
# inputs = self.model.get_inputs()
# namespace = "train.reader"
# train_data_path = envs.get_global_env("train_data_path", None,
# namespace)
#else:
# inputs = self.model.get_infer_inputs()
# namespace = "evaluate.reader"
# train_data_path = envs.get_global_env("test_data_path", None,
# namespace)
def
_get_dataset
(
self
,
dataset_name
):
namespace
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
namespace
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
namespace
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
namespace
+
"thread_num"
)
#threads = int(envs.get_runtime_environ("train.trainer.threads"))
#batch_size = envs.get_global_env("batch_size", None, namespace)
batch_size
=
envs
.
get_global_env
(
namespace
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
namespace
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
reader_class
=
envs
.
get_global_env
(
namespace
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
...
...
core/utils/envs.py
浏览文件 @
f385e9ce
...
...
@@ -20,7 +20,7 @@ import sys
global_envs
=
{}
global_envs_raw
=
{}
#
global_envs_raw = {}
def
flatten_environs
(
envs
,
separator
=
"."
):
flatten_dict
=
{}
...
...
@@ -63,23 +63,44 @@ def get_trainer():
def
set_global_envs
(
envs
):
assert
isinstance
(
envs
,
dict
)
global_envs_raw
=
envs
return
# namespace_nests = []
#print(envs)
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
# if not isinstance(local_envs, dict):
# global_k = ".".join(namespace_nests)
# global_envs[global_k] = local_envs
# return
for
k
,
v
in
local_envs
.
items
():
#print(k)
if
isinstance
(
v
,
dict
):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"executor"
)
and
isinstance
(
v
,
list
):
#print("=======================")
#print([i for i in v])
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
nests
.
append
(
i
[
"name"
])
fatten_env_namespace
(
nests
,
i
)
#global_k = ".".join(namespace_nests + [k, i["name"]])
#global_envs[global_k] = i
#print([i for i in v])
#global_k = ".".join(namespace_nests + [k])
#global_envs[global_k] = v
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
global_envs
[
global_k
]
=
v
for
k
,
v
in
envs
.
items
():
fatten_env_namespace
([
k
],
v
)
#for k, v in envs.items():
# fatten_env_namespace([k], v)
fatten_env_namespace
([],
envs
)
for
i
in
global_envs
:
print
i
,
":"
,
global_envs
[
i
]
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
"""
...
...
@@ -111,7 +132,7 @@ def windows_path_converter(path):
def
update_workspace
():
workspace
=
global_envs
.
get
(
"
train.workspace"
,
None
)
workspace
=
global_envs
.
get
(
"
workspace"
)
if
not
workspace
:
return
workspace
=
path_adapter
(
workspace
)
...
...
models/rank/dnn/model.py
浏览文件 @
f385e9ce
...
...
@@ -83,7 +83,6 @@ class Model(ModelBase):
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录