Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
b1a8a46e
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1a8a46e
编写于
8月 01, 2019
作者:
X
xiexionghang
浏览文件
操作
浏览文件
下载
差异文件
for runnable trainer
上级
c1c5c20d
99222206
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
805 addition
and
15 deletion
+805
-15
BCLOUD
BCLOUD
+19
-1
paddle/fluid/pybind/.gitignore
paddle/fluid/pybind/.gitignore
+0
-1
paddle/fluid/pybind/pybind.h
paddle/fluid/pybind/pybind.h
+553
-0
paddle/fluid/train/custom_trainer/feed/executor/executor.cc
paddle/fluid/train/custom_trainer/feed/executor/executor.cc
+129
-0
paddle/fluid/train/custom_trainer/feed/executor/executor.h
paddle/fluid/train/custom_trainer/feed/executor/executor.h
+9
-8
paddle/fluid/train/custom_trainer/feed/main.cc
paddle/fluid/train/custom_trainer/feed/main.cc
+2
-1
paddle/fluid/train/custom_trainer/feed/process/init_env_process.cc
...uid/train/custom_trainer/feed/process/init_env_process.cc
+1
-4
paddle/fluid/train/custom_trainer/feed/unit_test/main.cc
paddle/fluid/train/custom_trainer/feed/unit_test/main.cc
+12
-0
paddle/fluid/train/custom_trainer/feed/unit_test/test_executor.cc
...luid/train/custom_trainer/feed/unit_test/test_executor.cc
+80
-0
未找到文件。
BCLOUD
浏览文件 @
b1a8a46e
此差异已折叠。
点击以展开。
paddle/fluid/pybind/.gitignore
已删除
100644 → 0
浏览文件 @
c1c5c20d
pybind.h
paddle/fluid/pybind/pybind.h
0 → 100644
浏览文件 @
b1a8a46e
#ifdef PYBIND_AVX_MKLML
// Generated by the paddle/fluid/operator/CMakeLists.txt. DO NOT EDIT!
USE_NO_KERNEL_OP
(
feed
);
USE_NO_KERNEL_OP
(
while
);
USE_NO_KERNEL_OP
(
get_places
);
USE_NO_KERNEL_OP
(
fetch
);
USE_NO_KERNEL_OP
(
conditional_block_infer
);
USE_NO_KERNEL_OP
(
conditional_block
);
USE_OP
(
less_than
);
USE_OP
(
logical_and
);
USE_NO_KERNEL_OP
(
read_from_array
);
USE_CPU_ONLY_OP
(
bipartite_match
);
USE_OP
(
box_coder
);
USE_OP
(
iou_similarity
);
USE_CPU_ONLY_OP
(
mine_hard_examples
);
USE_CPU_ONLY_OP
(
multiclass_nms
);
USE_OP
(
prior_box
);
USE_OP
(
density_prior_box
);
USE_OP
(
anchor_generator
);
USE_OP
(
target_assign
);
USE_OP
(
polygon_box_transform
);
USE_CPU_ONLY_OP
(
rpn_target_assign
);
USE_CPU_ONLY_OP
(
generate_proposal_labels
);
USE_OP
(
box_clip
);
USE_CPU_ONLY_OP
(
yolov3_loss
);
USE_OP
(
yolo_box
);
USE_OP
(
box_decoder_and_assign
);
USE_OP
(
sigmoid_focal_loss
);
USE_CPU_ONLY_OP
(
retinanet_detection_output
);
USE_CPU_ONLY_OP
(
generate_proposals
);
USE_CPU_ONLY_OP
(
distribute_fpn_proposals
);
USE_CPU_ONLY_OP
(
collect_fpn_proposals
);
USE_OP
(
roi_perspective_transform
);
USE_CPU_ONLY_OP
(
generate_mask_labels
);
USE_OP
(
elementwise_mod
);
USE_OP
(
elementwise_floordiv
);
USE_OP
(
elementwise_max
);
USE_OP
(
elementwise_pow
);
USE_OP
(
elementwise_sub_grad
);
USE_OP
(
elementwise_add_grad
);
USE_OP
(
elementwise_min
);
USE_OP
(
elementwise_div
);
USE_OP
(
elementwise_mul
);
USE_CPU_ONLY_OP
(
fusion_squared_mat_sub
);
USE_CPU_ONLY_OP
(
fusion_seqpool_concat
);
USE_CPU_ONLY_OP
(
fused_embedding_fc_lstm
);
USE_CPU_ONLY_OP
(
fusion_seqexpand_concat_fc
);
USE_CPU_ONLY_OP
(
fused_embedding_seq_pool
);
USE_CPU_ONLY_OP
(
fusion_seqconv_eltadd_relu
);
USE_CPU_ONLY_OP
(
fusion_gru
);
USE_CPU_ONLY_OP
(
fusion_repeated_fc_relu
);
USE_CPU_ONLY_OP
(
fusion_lstm
);
USE_OP
(
fused_elemwise_activation
);
USE_OP
(
accuracy
);
USE_CPU_ONLY_OP
(
precision_recall
);
USE_CPU_ONLY_OP
(
auc
);
USE_OP
(
adamax
);
USE_OP
(
sgd
);
USE_OP
(
lars_momentum
);
USE_OP
(
adagrad
);
USE_OP
(
ftrl
);
USE_OP
(
momentum
);
USE_OP
(
adadelta
);
USE_OP
(
rmsprop
);
USE_OP
(
lamb
);
USE_OP
(
proximal_gd
);
USE_OP
(
proximal_adagrad
);
USE_OP
(
adam
);
USE_OP
(
decayed_adagrad
);
USE_OP
(
reduce_all
);
USE_OP
(
reduce_min
);
USE_OP
(
reduce_sum
);
USE_OP
(
reduce_any
);
USE_OP
(
reduce_max
);
USE_OP
(
reduce_mean
);
USE_OP
(
reduce_prod
);
USE_OP
(
sequence_erase
);
USE_OP
(
sequence_unpad
);
USE_OP
(
sequence_mask
);
USE_OP
(
sequence_expand
);
USE_OP
(
sequence_pad
);
USE_OP
(
sequence_enumerate
);
USE_OP
(
sequence_slice
);
USE_OP
(
sequence_softmax
);
USE_OP
(
sequence_expand_as
);
USE_OP
(
sequence_pool
);
USE_OP
(
sequence_reverse
);
USE_CPU_ONLY_OP
(
sequence_scatter
);
USE_OP
(
sequence_conv
);
USE_OP
(
sequence_concat
);
USE_OP
(
sequence_reshape
);
USE_NO_KERNEL_OP
(
open_files
);
USE_NO_KERNEL_OP
(
create_random_data_generator
);
USE_NO_KERNEL_OP
(
create_shuffle_reader
);
USE_NO_KERNEL_OP
(
create_batch_reader
);
USE_NO_KERNEL_OP
(
create_recordio_file_reader
);
USE_NO_KERNEL_OP
(
create_double_buffer_reader
);
USE_NO_KERNEL_OP
(
create_multi_pass_reader
);
USE_NO_KERNEL_OP
(
create_custom_reader
);
USE_NO_KERNEL_OP
(
create_py_reader
);
USE_NO_KERNEL_OP
(
read
);
USE_OP
(
increment
);
USE_OP
(
stack
);
USE_CPU_ONLY_OP
(
fc
);
USE_NO_KERNEL_OP
(
assign
);
USE_OP
(
load
);
USE_NO_KERNEL_OP
(
fill
);
USE_NO_KERNEL_OP
(
reorder_lod_tensor_by_rank
);
USE_OP
(
conv_shift
);
USE_OP
(
fill_zeros_like
);
USE_CPU_ONLY_OP
(
hash
);
USE_NO_KERNEL_OP
(
dequantize
);
USE_OP
(
fake_quantize_abs_max
);
USE_OP
(
size
);
USE_OP
(
scatter
);
USE_OP
(
uniform_random
);
USE_OP
(
beam_search
);
USE_NO_KERNEL_OP
(
beam_search_decode
);
USE_OP
(
dropout
);
USE_OP
(
bilinear_interp
);
USE_OP
(
sampling_id
);
USE_OP
(
lstm
);
USE_OP
(
modified_huber_loss
);
USE_OP
(
temporal_shift
);
USE_OP
(
sum
);
USE_OP
(
arg_min
);
USE_OP
(
psroi_pool
);
USE_NO_KERNEL_OP
(
uniform_random_batch_size_like
);
USE_NO_KERNEL_OP
(
rnn_memory_helper
);
USE_CPU_ONLY_OP
(
crf_decoding
);
USE_OP
(
where
);
USE_OP
(
fake_dequantize_max_abs
);
USE_OP
(
mean_iou
);
USE_OP
(
roi_align
);
USE_OP
(
range
);
USE_OP
(
edit_distance
);
USE_OP
(
multiplex
);
USE_OP
(
clip
);
USE_OP
(
gaussian_random
);
USE_OP
(
norm
);
USE_OP
(
rank_loss
);
USE_CPU_ONLY_OP
(
detection_map
);
USE_OP
(
lstm_unit
);
USE_OP
(
shard_index
);
USE_OP
(
shape
);
USE_OP
(
arg_max
);
USE_OP
(
average_accumulates
);
USE_NO_KERNEL_OP
(
requantize
);
USE_OP
(
conv2d
);
USE_CPU_ONLY_OP
(
add_position_encoding
);
USE_OP
(
gru_unit
);
USE_OP
(
batch_norm
);
USE_CPU_ONLY_OP
(
chunk_eval
);
USE_NO_KERNEL_OP
(
lod_rank_table
);
USE_NO_KERNEL_OP
(
unsqueeze
);
USE_CPU_ONLY_OP
(
positive_negative_pair
);
USE_OP
(
im2sequence
);
USE_OP
(
margin_rank_loss
);
USE_OP
(
hinge_loss
);
USE_CPU_ONLY_OP
(
cvm
);
USE_OP
(
huber_loss
);
USE_OP
(
crop
);
USE_OP
(
relu_grad
);
USE_CPU_ONLY_OP
(
hierarchical_sigmoid
);
USE_OP
(
unfold
);
USE_NO_KERNEL_OP
(
max_sequence_len
);
USE_OP
(
mul
);
USE_CPU_ONLY_OP
(
attention_lstm
);
USE_OP
(
top_k
);
USE_OP
(
group_norm
);
USE_OP
(
selu
);
USE_OP
(
lstmp
);
USE_NO_KERNEL_OP
(
merge_lod_tensor
);
USE_OP
(
truncated_gaussian_random
);
USE_OP
(
label_smooth
);
USE_CPU_ONLY_OP
(
matmul
);
USE_OP
(
spp
);
USE_NO_KERNEL_OP
(
unstack
);
USE_OP
(
conv2d_transpose
);
USE_OP
(
diag
);
USE_OP
(
unpool
);
USE_NO_KERNEL_OP
(
lod_array_length
);
USE_OP
(
affine_channel
);
USE_OP
(
log_loss
);
USE_OP
(
concat
);
USE_NO_KERNEL_OP
(
lod_tensor_to_array
);
USE_OP
(
gru
);
USE_CPU_ONLY_OP
(
coalesce_tensor
);
USE_OP
(
fsp
);
USE_OP
(
linspace
);
USE_OP
(
reverse
);
USE_NO_KERNEL_OP
(
recurrent
);
USE_OP
(
split_selected_rows
);
USE_OP
(
dgc_clip_by_norm
);
USE_OP
(
scale
);
USE_OP
(
save
);
USE_OP
(
load_combine
);
USE_OP
(
merge_selected_rows
);
USE_OP
(
split
);
USE_OP
(
cumsum
);
USE_OP
(
deformable_psroi_pooling
);
USE_CPU_ONLY_OP
(
teacher_student_sigmoid_loss
);
USE_OP
(
transpose
);
USE_OP
(
fill_constant_batch_size_like
);
USE_OP
(
sigmoid_cross_entropy_with_logits
);
USE_OP
(
shuffle_channel
);
USE_CPU_ONLY_OP
(
affine_grid
);
USE_NO_KERNEL_OP
(
split_lod_tensor
);
USE_CPU_ONLY_OP
(
grid_sampler
);
USE_OP
(
lookup_table
);
USE_OP
(
cos_sim
);
USE_NO_KERNEL_OP
(
quantize
);
USE_OP
(
spectral_norm
);
USE_OP
(
cross_entropy
);
USE_NO_KERNEL_OP
(
print
);
USE_OP
(
lrn
);
USE_CPU_ONLY_OP
(
nce
);
USE_CPU_ONLY_OP
(
similarity_focus
);
USE_CPU_ONLY_OP
(
get_tensor_from_selected_rows
);
USE_OP
(
squared_l2_distance
);
USE_OP
(
cudnn_lstm
);
USE_OP
(
tree_conv
);
USE_OP
(
one_hot
);
USE_NO_KERNEL_OP
(
lookup_sparse_table
);
USE_CPU_ONLY_OP
(
unique
);
USE_OP
(
mean
);
USE_OP
(
prelu
);
USE_NO_KERNEL_OP
(
delete_var
);
USE_OP
(
ctc_align
);
USE_OP
(
argsort
);
USE_CPU_ONLY_OP
(
data_norm
);
USE_OP
(
minus
);
USE_NO_KERNEL_OP
(
shrink_rnn_memory
);
USE_OP
(
lod_reset
);
USE_OP
(
l1_norm
);
USE_NO_KERNEL_OP
(
gaussian_random_batch_size_like
);
USE_OP
(
is_empty
);
USE_OP
(
bilinear_tensor_product
);
USE_OP
(
kldiv_loss
);
USE_NO_KERNEL_OP
(
squeeze
);
USE_OP
(
softmax
);
USE_OP
(
clip_by_norm
);
USE_OP
(
max_pool2d_with_index
);
USE_OP
(
linear_chain_crf
);
USE_CPU_ONLY_OP
(
reshape
);
USE_OP
(
fill_constant
);
USE_OP
(
space_to_depth
);
USE_OP
(
gather
);
USE_OP
(
softmax_with_cross_entropy
);
USE_OP
(
slice
);
USE_OP
(
sign
);
USE_OP
(
expand
);
USE_OP
(
smooth_l1_loss
);
USE_NO_KERNEL_OP
(
tensor_array_to_tensor
);
USE_OP
(
row_conv
);
USE_OP
(
pad2d
);
USE_OP
(
pixel_shuffle
);
USE_OP
(
assign_value
);
USE_OP
(
random_crop
);
USE_OP
(
squared_l2_norm
);
USE_OP
(
save_combine
);
USE_OP
(
pool2d
);
USE_OP
(
cast
);
USE_NO_KERNEL_OP
(
array_to_lod_tensor
);
USE_OP
(
fill_any_like
);
USE_NO_KERNEL_OP
(
flatten
);
USE_OP
(
sample_logits
);
USE_OP
(
pad
);
USE_CPU_ONLY_OP
(
bpr_loss
);
USE_OP
(
roi_pool
);
USE_OP
(
pad_constant_like
);
USE_OP
(
isfinite
);
USE_OP
(
layer_norm
);
USE_OP
(
maxout
);
USE_OP
(
warpctc
);
#elif defined PYBIND_NOAVX_OPENBLAS
// Generated by the paddle/fluid/operator/CMakeLists.txt. DO NOT EDIT!
USE_NO_KERNEL_OP
(
feed
);
USE_NO_KERNEL_OP
(
while
);
USE_NO_KERNEL_OP
(
get_places
);
USE_NO_KERNEL_OP
(
fetch
);
USE_NO_KERNEL_OP
(
conditional_block_infer
);
USE_NO_KERNEL_OP
(
conditional_block
);
USE_OP
(
less_than
);
USE_OP
(
logical_and
);
USE_NO_KERNEL_OP
(
read_from_array
);
USE_CPU_ONLY_OP
(
bipartite_match
);
USE_OP
(
box_coder
);
USE_OP
(
iou_similarity
);
USE_CPU_ONLY_OP
(
mine_hard_examples
);
USE_CPU_ONLY_OP
(
multiclass_nms
);
USE_OP
(
prior_box
);
USE_OP
(
density_prior_box
);
USE_OP
(
anchor_generator
);
USE_OP
(
target_assign
);
USE_OP
(
polygon_box_transform
);
USE_CPU_ONLY_OP
(
rpn_target_assign
);
USE_CPU_ONLY_OP
(
generate_proposal_labels
);
USE_OP
(
box_clip
);
USE_CPU_ONLY_OP
(
yolov3_loss
);
USE_OP
(
yolo_box
);
USE_OP
(
box_decoder_and_assign
);
USE_OP
(
sigmoid_focal_loss
);
USE_CPU_ONLY_OP
(
retinanet_detection_output
);
USE_CPU_ONLY_OP
(
generate_proposals
);
USE_CPU_ONLY_OP
(
distribute_fpn_proposals
);
USE_CPU_ONLY_OP
(
collect_fpn_proposals
);
USE_OP
(
roi_perspective_transform
);
USE_CPU_ONLY_OP
(
generate_mask_labels
);
USE_OP
(
elementwise_mod
);
USE_OP
(
elementwise_floordiv
);
USE_OP
(
elementwise_max
);
USE_OP
(
elementwise_pow
);
USE_OP
(
elementwise_sub_grad
);
USE_OP
(
elementwise_add_grad
);
USE_OP
(
elementwise_min
);
USE_OP
(
elementwise_div
);
USE_OP
(
elementwise_mul
);
USE_CPU_ONLY_OP
(
fusion_squared_mat_sub
);
USE_CPU_ONLY_OP
(
fusion_seqpool_concat
);
USE_CPU_ONLY_OP
(
fused_embedding_fc_lstm
);
USE_CPU_ONLY_OP
(
fusion_seqexpand_concat_fc
);
USE_CPU_ONLY_OP
(
fused_embedding_seq_pool
);
USE_CPU_ONLY_OP
(
fusion_seqconv_eltadd_relu
);
USE_CPU_ONLY_OP
(
fusion_gru
);
USE_CPU_ONLY_OP
(
fusion_repeated_fc_relu
);
USE_CPU_ONLY_OP
(
fusion_lstm
);
USE_OP
(
fused_elemwise_activation
);
USE_OP
(
accuracy
);
USE_CPU_ONLY_OP
(
precision_recall
);
USE_CPU_ONLY_OP
(
auc
);
USE_OP
(
adamax
);
USE_OP
(
sgd
);
USE_OP
(
lars_momentum
);
USE_OP
(
adagrad
);
USE_OP
(
ftrl
);
USE_OP
(
momentum
);
USE_OP
(
adadelta
);
USE_OP
(
rmsprop
);
USE_OP
(
lamb
);
USE_OP
(
proximal_gd
);
USE_OP
(
proximal_adagrad
);
USE_OP
(
adam
);
USE_OP
(
decayed_adagrad
);
USE_OP
(
reduce_all
);
USE_OP
(
reduce_min
);
USE_OP
(
reduce_sum
);
USE_OP
(
reduce_any
);
USE_OP
(
reduce_max
);
USE_OP
(
reduce_mean
);
USE_OP
(
reduce_prod
);
USE_OP
(
sequence_erase
);
USE_OP
(
sequence_unpad
);
USE_OP
(
sequence_mask
);
USE_OP
(
sequence_expand
);
USE_OP
(
sequence_pad
);
USE_OP
(
sequence_enumerate
);
USE_OP
(
sequence_slice
);
USE_OP
(
sequence_softmax
);
USE_OP
(
sequence_expand_as
);
USE_OP
(
sequence_pool
);
USE_OP
(
sequence_reverse
);
USE_CPU_ONLY_OP
(
sequence_scatter
);
USE_OP
(
sequence_conv
);
USE_OP
(
sequence_concat
);
USE_OP
(
sequence_reshape
);
USE_NO_KERNEL_OP
(
open_files
);
USE_NO_KERNEL_OP
(
create_random_data_generator
);
USE_NO_KERNEL_OP
(
create_shuffle_reader
);
USE_NO_KERNEL_OP
(
create_batch_reader
);
USE_NO_KERNEL_OP
(
create_recordio_file_reader
);
USE_NO_KERNEL_OP
(
create_double_buffer_reader
);
USE_NO_KERNEL_OP
(
create_multi_pass_reader
);
USE_NO_KERNEL_OP
(
create_custom_reader
);
USE_NO_KERNEL_OP
(
create_py_reader
);
USE_NO_KERNEL_OP
(
read
);
USE_OP
(
increment
);
USE_OP
(
stack
);
USE_CPU_ONLY_OP
(
fc
);
USE_NO_KERNEL_OP
(
assign
);
USE_OP
(
load
);
USE_NO_KERNEL_OP
(
fill
);
USE_NO_KERNEL_OP
(
reorder_lod_tensor_by_rank
);
USE_OP
(
conv_shift
);
USE_OP
(
fill_zeros_like
);
USE_CPU_ONLY_OP
(
hash
);
USE_NO_KERNEL_OP
(
dequantize
);
USE_OP
(
fake_quantize_abs_max
);
USE_OP
(
size
);
USE_OP
(
scatter
);
USE_OP
(
uniform_random
);
USE_OP
(
beam_search
);
USE_NO_KERNEL_OP
(
beam_search_decode
);
USE_OP
(
dropout
);
USE_OP
(
bilinear_interp
);
USE_OP
(
sampling_id
);
USE_OP
(
lstm
);
USE_OP
(
modified_huber_loss
);
USE_OP
(
temporal_shift
);
USE_OP
(
sum
);
USE_OP
(
arg_min
);
USE_OP
(
psroi_pool
);
USE_NO_KERNEL_OP
(
uniform_random_batch_size_like
);
USE_NO_KERNEL_OP
(
rnn_memory_helper
);
USE_CPU_ONLY_OP
(
crf_decoding
);
USE_OP
(
where
);
USE_OP
(
fake_dequantize_max_abs
);
USE_OP
(
mean_iou
);
USE_OP
(
roi_align
);
USE_OP
(
range
);
USE_OP
(
edit_distance
);
USE_OP
(
multiplex
);
USE_OP
(
clip
);
USE_OP
(
gaussian_random
);
USE_OP
(
norm
);
USE_OP
(
rank_loss
);
USE_CPU_ONLY_OP
(
detection_map
);
USE_OP
(
lstm_unit
);
USE_OP
(
shard_index
);
USE_OP
(
shape
);
USE_OP
(
arg_max
);
USE_OP
(
average_accumulates
);
USE_NO_KERNEL_OP
(
requantize
);
USE_OP
(
conv2d
);
USE_CPU_ONLY_OP
(
add_position_encoding
);
USE_OP
(
gru_unit
);
USE_OP
(
batch_norm
);
USE_CPU_ONLY_OP
(
chunk_eval
);
USE_NO_KERNEL_OP
(
lod_rank_table
);
USE_NO_KERNEL_OP
(
unsqueeze
);
USE_CPU_ONLY_OP
(
positive_negative_pair
);
USE_OP
(
im2sequence
);
USE_OP
(
margin_rank_loss
);
USE_OP
(
hinge_loss
);
USE_CPU_ONLY_OP
(
cvm
);
USE_OP
(
huber_loss
);
USE_OP
(
crop
);
USE_OP
(
relu_grad
);
USE_CPU_ONLY_OP
(
hierarchical_sigmoid
);
USE_OP
(
unfold
);
USE_NO_KERNEL_OP
(
max_sequence_len
);
USE_OP
(
mul
);
USE_CPU_ONLY_OP
(
attention_lstm
);
USE_OP
(
top_k
);
USE_OP
(
group_norm
);
USE_OP
(
selu
);
USE_OP
(
lstmp
);
USE_NO_KERNEL_OP
(
merge_lod_tensor
);
USE_OP
(
truncated_gaussian_random
);
USE_OP
(
label_smooth
);
USE_CPU_ONLY_OP
(
matmul
);
USE_OP
(
spp
);
USE_NO_KERNEL_OP
(
unstack
);
USE_OP
(
conv2d_transpose
);
USE_OP
(
diag
);
USE_OP
(
unpool
);
USE_NO_KERNEL_OP
(
lod_array_length
);
USE_OP
(
affine_channel
);
USE_OP
(
log_loss
);
USE_OP
(
concat
);
USE_NO_KERNEL_OP
(
lod_tensor_to_array
);
USE_OP
(
gru
);
USE_CPU_ONLY_OP
(
coalesce_tensor
);
USE_OP
(
fsp
);
USE_OP
(
linspace
);
USE_OP
(
reverse
);
USE_NO_KERNEL_OP
(
recurrent
);
USE_OP
(
split_selected_rows
);
USE_OP
(
dgc_clip_by_norm
);
USE_OP
(
scale
);
USE_OP
(
save
);
USE_OP
(
load_combine
);
USE_OP
(
merge_selected_rows
);
USE_OP
(
split
);
USE_OP
(
cumsum
);
USE_OP
(
deformable_psroi_pooling
);
USE_CPU_ONLY_OP
(
teacher_student_sigmoid_loss
);
USE_OP
(
transpose
);
USE_OP
(
fill_constant_batch_size_like
);
USE_OP
(
sigmoid_cross_entropy_with_logits
);
USE_OP
(
shuffle_channel
);
USE_CPU_ONLY_OP
(
affine_grid
);
USE_NO_KERNEL_OP
(
split_lod_tensor
);
USE_CPU_ONLY_OP
(
grid_sampler
);
USE_OP
(
lookup_table
);
USE_OP
(
cos_sim
);
USE_NO_KERNEL_OP
(
quantize
);
USE_OP
(
spectral_norm
);
USE_OP
(
cross_entropy
);
USE_NO_KERNEL_OP
(
print
);
USE_OP
(
lrn
);
USE_CPU_ONLY_OP
(
nce
);
USE_CPU_ONLY_OP
(
similarity_focus
);
USE_CPU_ONLY_OP
(
get_tensor_from_selected_rows
);
USE_OP
(
squared_l2_distance
);
USE_OP
(
cudnn_lstm
);
USE_OP
(
tree_conv
);
USE_OP
(
one_hot
);
USE_NO_KERNEL_OP
(
lookup_sparse_table
);
USE_CPU_ONLY_OP
(
unique
);
USE_OP
(
mean
);
USE_OP
(
prelu
);
USE_NO_KERNEL_OP
(
delete_var
);
USE_OP
(
ctc_align
);
USE_OP
(
argsort
);
USE_CPU_ONLY_OP
(
data_norm
);
USE_OP
(
minus
);
USE_NO_KERNEL_OP
(
shrink_rnn_memory
);
USE_OP
(
lod_reset
);
USE_OP
(
l1_norm
);
USE_NO_KERNEL_OP
(
gaussian_random_batch_size_like
);
USE_OP
(
is_empty
);
USE_OP
(
bilinear_tensor_product
);
USE_OP
(
kldiv_loss
);
USE_NO_KERNEL_OP
(
squeeze
);
USE_OP
(
softmax
);
USE_OP
(
clip_by_norm
);
USE_OP
(
max_pool2d_with_index
);
USE_OP
(
linear_chain_crf
);
USE_CPU_ONLY_OP
(
reshape
);
USE_OP
(
fill_constant
);
USE_OP
(
space_to_depth
);
USE_OP
(
gather
);
USE_OP
(
softmax_with_cross_entropy
);
USE_OP
(
slice
);
USE_OP
(
sign
);
USE_OP
(
expand
);
USE_OP
(
smooth_l1_loss
);
USE_NO_KERNEL_OP
(
tensor_array_to_tensor
);
USE_OP
(
row_conv
);
USE_OP
(
pad2d
);
USE_OP
(
pixel_shuffle
);
USE_OP
(
assign_value
);
USE_OP
(
random_crop
);
USE_OP
(
squared_l2_norm
);
USE_OP
(
save_combine
);
USE_OP
(
pool2d
);
USE_OP
(
cast
);
USE_NO_KERNEL_OP
(
array_to_lod_tensor
);
USE_OP
(
fill_any_like
);
USE_NO_KERNEL_OP
(
flatten
);
USE_OP
(
sample_logits
);
USE_OP
(
pad
);
USE_CPU_ONLY_OP
(
bpr_loss
);
USE_OP
(
roi_pool
);
USE_OP
(
pad_constant_like
);
USE_OP
(
isfinite
);
USE_OP
(
layer_norm
);
USE_OP
(
maxout
);
USE_OP
(
warpctc
);
#endif
paddle/fluid/train/custom_trainer/feed/executor/executor.cc
0 → 100644
浏览文件 @
b1a8a46e
#include "paddle/fluid/train/custom_trainer/feed/executor/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
custom_trainer
{
namespace
feed
{
namespace
{
int
ReadBinaryFile
(
const
std
::
string
&
filename
,
std
::
string
*
contents
)
{
std
::
ifstream
fin
(
filename
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
if
(
!
fin
)
{
VLOG
(
2
)
<<
"Cannot open file "
<<
filename
;
return
-
1
;
}
fin
.
seekg
(
0
,
std
::
ios
::
end
);
contents
->
clear
();
contents
->
resize
(
fin
.
tellg
());
fin
.
seekg
(
0
,
std
::
ios
::
beg
);
fin
.
read
(
&
(
contents
->
at
(
0
)),
contents
->
size
());
fin
.
close
();
return
0
;
}
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
Load
(
paddle
::
framework
::
Executor
*
/*executor*/
,
const
std
::
string
&
model_filename
)
{
VLOG
(
3
)
<<
"loading model from "
<<
model_filename
;
std
::
string
program_desc_str
;
if
(
ReadBinaryFile
(
model_filename
,
&
program_desc_str
)
!=
0
)
{
return
nullptr
;
}
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
main_program
(
new
paddle
::
framework
::
ProgramDesc
(
program_desc_str
));
return
main_program
;
}
}
struct
SimpleExecute
::
Context
{
Context
(
const
::
paddle
::
platform
::
Place
&
place
)
:
place
(
place
),
executor
(
place
)
{
}
const
::
paddle
::
platform
::
Place
&
place
;
::
paddle
::
framework
::
Executor
executor
;
::
std
::
unique_ptr
<::
paddle
::
framework
::
ProgramDesc
>
main_program
;
::
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prepare_context
;
details
::
TensorArrayBatchCleaner
tensor_array_batch_cleaner
;
};
SimpleExecute
::
SimpleExecute
()
{
}
SimpleExecute
::~
SimpleExecute
()
{
}
int
SimpleExecute
::
initialize
(
YAML
::
Node
exe_config
,
std
::
shared_ptr
<
TrainerContext
>
context_ptr
)
{
paddle
::
framework
::
InitDevices
(
false
);
if
(
exe_config
[
"num_threads"
])
{
paddle
::
platform
::
SetNumThreads
(
exe_config
[
"num_threads"
].
as
<
int
>
());
}
else
{
paddle
::
platform
::
SetNumThreads
(
1
);
}
if
(
!
exe_config
[
"startup_program"
]
||
!
exe_config
[
"main_program"
])
{
VLOG
(
2
)
<<
"fail to load config"
;
return
-
1
;
}
try
{
_context
.
reset
(
new
SimpleExecute
::
Context
(
context_ptr
->
cpu_place
));
auto
startup_program
=
Load
(
&
_context
->
executor
,
exe_config
[
"startup_program"
].
as
<
std
::
string
>
());
if
(
startup_program
==
nullptr
)
{
VLOG
(
2
)
<<
"fail to load startup_program: "
<<
exe_config
[
"startup_program"
].
as
<
std
::
string
>
();
return
-
1
;
}
_context
->
executor
.
Run
(
*
startup_program
,
this
->
scope
(),
0
,
false
,
true
);
_context
->
main_program
=
Load
(
&
_context
->
executor
,
exe_config
[
"main_program"
].
as
<
std
::
string
>
());
if
(
_context
->
main_program
==
nullptr
)
{
VLOG
(
2
)
<<
"fail to load main_program: "
<<
exe_config
[
"main_program"
].
as
<
std
::
string
>
();
return
-
1
;
}
_context
->
prepare_context
=
_context
->
executor
.
Prepare
(
*
_context
->
main_program
,
0
);
_context
->
executor
.
CreateVariables
(
*
_context
->
main_program
,
this
->
scope
(),
0
);
}
catch
(
::
paddle
::
platform
::
EnforceNotMet
&
err
)
{
VLOG
(
2
)
<<
err
.
what
();
_context
.
reset
(
nullptr
);
return
-
1
;
}
return
0
;
}
int
SimpleExecute
::
run
()
{
if
(
_context
==
nullptr
)
{
VLOG
(
2
)
<<
"need initialize before run"
;
return
-
1
;
}
try
{
_context
->
executor
.
RunPreparedContext
(
_context
->
prepare_context
.
get
(),
this
->
scope
(),
false
,
/* don't create local scope each time*/
false
/* don't create variable each time */
);
// For some other vector like containers not cleaned after each batch.
_context
->
tensor_array_batch_cleaner
.
CollectNoTensorVars
(
this
->
scope
());
_context
->
tensor_array_batch_cleaner
.
ResetNoTensorVars
();
}
catch
(
::
paddle
::
platform
::
EnforceNotMet
&
err
)
{
VLOG
(
2
)
<<
err
.
what
();
return
-
1
;
}
return
0
;
}
}
// namespace feed
}
// namespace custom_trainer
}
// namespace paddle
paddle/fluid/train/custom_trainer/feed/executor/executor.h
浏览文件 @
b1a8a46e
#pragma once
#include <functional>
#include "paddle/fluid/framework/
executor
.h"
#include "paddle/fluid/framework/
scope
.h"
#include "paddle/fluid/train/custom_trainer/feed/common/registerer.h"
#include "paddle/fluid/train/custom_trainer/feed/trainer_context.h"
...
...
@@ -23,7 +23,7 @@ public:
}
//直接取var
template
<
class
T
>
T
*
var
(
const
std
::
string
&
name
)
{
const
T
&
var
(
const
std
::
string
&
name
)
{
return
_scope
.
Var
(
name
)
->
Get
<
T
>
();
}
template
<
class
T
>
...
...
@@ -31,8 +31,8 @@ public:
return
_scope
.
Var
(
name
)
->
GetMutable
<
T
>
();
}
//执行
n轮训练,每轮回调(epoch_id, _scope)
virtual
int
run
(
uint32_t
epoch_num
,
std
::
function
<
void
(
uint32_t
,
::
paddle
::
framework
::
Scope
*
)
>
)
=
0
;
//执行
训练
virtual
int
run
()
=
0
;
virtual
bool
is_dump_all_model
()
{
return
false
;
...
...
@@ -44,13 +44,14 @@ REGISTER_REGISTERER(Executor);
class
SimpleExecutor
:
public
Executor
{
public:
SimpleExecut
or
()
{}
virtual
~
SimpleExecut
or
()
{}
SimpleExecut
e
();
virtual
~
SimpleExecut
e
();
virtual
int
initialize
(
YAML
::
Node
exe_config
,
std
::
shared_ptr
<
TrainerContext
>
context_ptr
);
virtual
int
run
(
uint32_t
epoch_num
,
std
::
function
<
void
(
uint32_t
,
::
paddle
::
framework
::
Scope
*
)
>
)
=
0
;
virtual
int
run
(
)
;
protected:
std
::
shared_ptr
<::
paddle
::
framework
::
Executor
>
_executor
;
struct
Context
;
std
::
unique_ptr
<
Context
>
_context
;
};
}
// namespace feed
...
...
paddle/fluid/train/custom_trainer/feed/main.cc
浏览文件 @
b1a8a46e
...
...
@@ -5,6 +5,8 @@
#include "paddle/fluid/train/custom_trainer/feed/trainer_context.h"
#include "paddle/fluid/train/custom_trainer/feed/process/process.h"
#include "paddle/fluid/train/custom_trainer/feed/process/init_env_process.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/pybind/pybind.h"
using
namespace
paddle
::
custom_trainer
::
feed
;
...
...
@@ -19,7 +21,6 @@ int main(int argc, char* argv[]) {
//load trainer config
auto
trainer_context_ptr
=
std
::
make_shared
<
TrainerContext
>
();
trainer_context_ptr
->
trainer_config
=
YAML
::
LoadFile
(
FLAGS_feed_trainer_conf_path
);
VLOG
(
3
)
<<
"yaml node size"
<<
trainer_context_ptr
->
trainer_config
.
size
();
std
::
vector
<
std
::
string
>
process_name_list
=
{
"InitEnvProcess"
,
...
...
paddle/fluid/train/custom_trainer/feed/process/init_env_process.cc
浏览文件 @
b1a8a46e
...
...
@@ -17,10 +17,7 @@ int InitEnvProcess::initialize(std::shared_ptr<TrainerContext> context_ptr) {
paddle
::
framework
::
InitDevices
(
false
);
context_ptr
->
cpu_place
=
paddle
::
platform
::
CPUPlace
();
YAML
::
Node
config
;
config
.
reset
(
_context_ptr
->
trainer_config
);
VLOG
(
3
)
<<
"yaml node size : "
<<
config
.
size
();
YAML
::
Node
config
=
_context_ptr
->
trainer_config
;
//environment
std
::
string
env_class
=
config
[
"environment"
][
"environment_class"
].
as
<
std
::
string
>
();
auto
*
environment
=
CREATE_CLASS
(
RuntimeEnvironment
,
env_class
);
...
...
paddle/fluid/train/custom_trainer/feed/unit_test/main.cc
0 → 100644
浏览文件 @
b1a8a46e
#include <gtest/gtest.h>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/pybind/pybind.h"
int32_t
main
(
int32_t
argc
,
char
**
argv
)
{
::
google
::
InitGoogleLogging
(
argv
[
0
]);
::
testing
::
InitGoogleTest
(
&
argc
,
argv
);
::
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
return
RUN_ALL_TESTS
();
}
paddle/fluid/train/custom_trainer/feed/unit_test/test_executor.cc
0 → 100644
浏览文件 @
b1a8a46e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <gtest/gtest.h>
#include "paddle/fluid/train/custom_trainer/feed/executor/executor.h"
#include "paddle/fluid/framework/tensor_util.h"
namespace
paddle
{
namespace
custom_trainer
{
namespace
feed
{
TEST
(
testSimpleExecute
,
initialize
)
{
SimpleExecute
execute
;
auto
context_ptr
=
std
::
make_shared
<
TrainerContext
>
();
YAML
::
Node
config
=
YAML
::
Load
(
"[1, 2, 3]"
);
ASSERT_NE
(
0
,
execute
.
initialize
(
config
,
context_ptr
));
config
=
YAML
::
Load
(
"{startup_program: ./data/startup_program, main_program: ./data/main_program}"
);
ASSERT_EQ
(
0
,
execute
.
initialize
(
config
,
context_ptr
));
config
=
YAML
::
Load
(
"{thread_num: 2, startup_program: ./data/startup_program, main_program: ./data/main_program}"
);
ASSERT_EQ
(
0
,
execute
.
initialize
(
config
,
context_ptr
));
}
float
uniform
(
float
min
,
float
max
)
{
float
result
=
(
float
)
rand
()
/
RAND_MAX
;
return
min
+
result
*
(
max
-
min
);
}
void
next_batch
(
int
batch_size
,
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
LoDTensor
*
x_tensor
,
paddle
::
framework
::
LoDTensor
*
y_tensor
)
{
x_tensor
->
Resize
({
batch_size
,
2
});
auto
x_data
=
x_tensor
->
mutable_data
<
float
>
(
place
);
y_tensor
->
Resize
({
batch_size
,
1
});
auto
y_data
=
y_tensor
->
mutable_data
<
float
>
(
place
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
x_data
[
i
*
2
]
=
uniform
(
-
2
,
2
);
x_data
[
i
*
2
+
1
]
=
uniform
(
-
2
,
2
);
float
dis
=
x_data
[
i
*
2
]
*
x_data
[
i
*
2
]
+
x_data
[
i
*
2
+
1
]
*
x_data
[
i
*
2
+
1
];
y_data
[
i
]
=
dis
<
1.0
?
1.0
:
0.0
;
}
}
TEST
(
testSimpleExecute
,
run
)
{
SimpleExecute
execute
;
auto
context_ptr
=
std
::
make_shared
<
TrainerContext
>
();
auto
config
=
YAML
::
Load
(
"{thread_num: 2, startup_program: ./data/startup_program, main_program: ./data/main_program}"
);
ASSERT_EQ
(
0
,
execute
.
initialize
(
config
,
context_ptr
));
auto
x_var
=
execute
.
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
"x"
);
auto
y_var
=
execute
.
mutable_var
<::
paddle
::
framework
::
LoDTensor
>
(
"y"
);
ASSERT_NE
(
nullptr
,
x_var
);
ASSERT_NE
(
nullptr
,
y_var
);
next_batch
(
1024
,
context_ptr
->
cpu_place
,
x_var
,
y_var
);
ASSERT_EQ
(
0
,
execute
.
run
());
auto
loss_var
=
execute
.
var
<::
paddle
::
framework
::
LoDTensor
>
(
"loss"
);
auto
loss
=
loss_var
.
data
<
float
>
()[
0
];
std
::
cout
<<
"loss: "
<<
loss
<<
std
::
endl
;
}
}
// namespace feed
}
// namespace custom_trainer
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录