Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
a15f7df1
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a15f7df1
编写于
6月 22, 2020
作者:
O
overlordmax
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug
上级
5917daf3
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
14 addition
and
5 deletion
+14
-5
README.md
README.md
+2
-1
doc/imgs/fibinet.png
doc/imgs/fibinet.png
+0
-0
models/rank/readme.md
models/rank/readme.md
+12
-4
未找到文件。
README.md
浏览文件 @
a15f7df1
...
...
@@ -59,7 +59,8 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
| 多任务 | [ESMM](models/multitask/esmm/model.py) | ✓ | ✓ | ✓ | ✓ | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/abs/1804.07931) |
| 多任务 | [MMOE](models/multitask/mmoe/model.py) | ✓ | ✓ | ✓ | ✓ | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| 多任务 | [ShareBottom](models/multitask/share-bottom/model.py) | ✓ | ✓ | ✓ | ✓ | [1998][Multitask learning](http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-203.pdf) |
...
...
doc/imgs/fibinet.png
0 → 100644
浏览文件 @
a15f7df1
79.8 KB
models/rank/readme.md
100755 → 100644
浏览文件 @
a15f7df1
...
...
@@ -37,35 +37,43 @@
| xDeepFM | xDeepFM |
[
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)(
2018
)
|
| DIN | Deep Interest Network |
[
Deep Interest Network for Click-Through Rate Prediction
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)(
2018
)
|
| FGCNN | Feature Generation by CNN |
[
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
](
https://arxiv.org/pdf/1904.04447.pdf
)(
2019
)
|
| FIBINET | Combining Feature Importance and Bilinear feature Interaction |
[
《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》
](
https://arxiv.org/pdf/1905.09433.pdf
)
|
下面是每个模型的简介(注:图片引用自链接中的论文)
[
wide&deep
](
https://dl.acm.org/doi/pdf/10.1145/2988450.2988454
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/wide&deep.png"
>
<p>
[
DeepFM
](
https://arxiv.org/pdf/1703.04247.pdf
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/deepfm.png"
>
<p>
[
XDeepFM
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3220023
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/xdeepfm.png"
>
<p>
[
DCN
](
https://dl.acm.org/doi/pdf/10.1145/3124749.3124754
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/dcn.png"
>
<p>
[
DIN
](
https://dl.acm.org/doi/pdf/10.1145/3219819.3219823
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/din.png"
>
<p>
[
FIBINET
](
https://arxiv.org/pdf/1905.09433.pdf
)
:
<p
align=
"center"
>
<img
align=
"center"
src=
"../../doc/imgs/fibinet.png"
>
<p>
## 使用教程(快速开始)
使用样例数据快速开始,参考
[
训练
](
###训练
)
&
[
预测
](
###预测
)
## 使用教程(复现论文)
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据,并且调整了batch_size等超参以便在样例数据上更加友好的显示训练&测试日志。如果需要复现readme中的效果请按照如下表格调整batch_size等超参,并使用提供的脚本下载对应数据集以及数据预处理。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录