Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
986c7679
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
986c7679
编写于
5月 28, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'yaml1' of
https://github.com/xjqbest/PaddleRec
into modify_yaml
上级
7d68c021
019cb085
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
150 addition
and
102 deletion
+150
-102
core/factory.py
core/factory.py
+1
-0
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+51
-69
core/utils/envs.py
core/utils/envs.py
+2
-1
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+30
-17
models/rank/dnn/model.py
models/rank/dnn/model.py
+9
-5
run.py
run.py
+57
-10
未找到文件。
core/factory.py
浏览文件 @
986c7679
...
...
@@ -26,6 +26,7 @@ trainers = {}
def
trainer_registry
():
trainers
[
"SingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer.py"
)
trainers
[
"SingleInfer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_infer.py"
)
trainers
[
"ClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"cluster_trainer.py"
)
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
...
...
core/trainers/single_trainer.py
浏览文件 @
986c7679
...
...
@@ -47,6 +47,7 @@ class SingleTrainer(TranspileTrainer):
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
...
...
@@ -80,7 +81,7 @@ class SingleTrainer(TranspileTrainer):
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
...
...
@@ -90,13 +91,10 @@ class SingleTrainer(TranspileTrainer):
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"
executor
"
]:
for
model_dict
in
self
.
_env
[
"
phase
"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
if
model_dict
[
"is_infer"
]:
inputs
=
model
.
_infer_data_var
else
:
inputs
=
model
.
_data_var
inputs
=
model
.
_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
...
...
@@ -110,11 +108,14 @@ class SingleTrainer(TranspileTrainer):
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
if
sparse_slots
is
None
and
dense_slots
is
None
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
...
...
@@ -122,7 +123,6 @@ class SingleTrainer(TranspileTrainer):
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
...
...
@@ -131,7 +131,8 @@ class SingleTrainer(TranspileTrainer):
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
...
...
@@ -140,9 +141,8 @@ class SingleTrainer(TranspileTrainer):
else
:
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"
executor
"
]:
for
model_dict
in
self
.
_env
[
"
phase
"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
...
...
@@ -161,42 +161,32 @@ class SingleTrainer(TranspileTrainer):
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
is_infer
=
model_dict
.
get
(
"is_infer"
,
False
)
if
is_infer
:
model
.
_infer_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
else
:
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
is_infer
)
model
.
_init_dataloader
(
is_infer
=
False
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
if
is_infer
:
model
.
net
(
model
.
_infer_data_var
,
True
)
else
:
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
model_dict
[
"is_infer"
]
=
is_infer
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"
executor
"
]:
for
model_dict
in
self
.
_env
[
"
phase
"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
...
...
@@ -204,13 +194,13 @@ class SingleTrainer(TranspileTrainer):
def
executor_train
(
self
,
context
):
epochs
=
int
(
self
.
_env
[
"epochs"
])
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"
executor
"
]:
for
model_dict
in
self
.
_env
[
"
phase
"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
(
j
)
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
...
...
@@ -235,10 +225,7 @@ class SingleTrainer(TranspileTrainer):
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
if
model_dict
[
"is_infer"
]:
metrics
=
model_class
.
get_infer_results
()
else
:
metrics
=
model_class
.
get_metrics
()
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
...
...
@@ -246,36 +233,24 @@ class SingleTrainer(TranspileTrainer):
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
if
model_dict
[
"is_infer"
]:
self
.
_exe
.
infer_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
else
:
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
if
not
model_dict
[
"is_infer"
]:
program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
if
model_dict
[
"is_infer"
]:
metrics
=
model_class
.
get_infer_results
()
else
:
metrics
=
model_class
.
get_metrics
()
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
...
...
@@ -283,7 +258,7 @@ class SingleTrainer(TranspileTrainer):
metrics_format
=
[]
fetch_period
=
20
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
m
odel_class
.
get_metrics
()
.
items
():
for
name
,
var
in
m
etrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
...
...
@@ -310,9 +285,11 @@ class SingleTrainer(TranspileTrainer):
context
[
'is_exit'
]
=
True
def
load
(
self
,
is_fleet
=
False
):
dirname
=
envs
.
get_global_env
(
"epoch.init_model_path"
,
None
)
dirname
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".init_model_path"
,
None
)
if
dirname
is
None
:
return
print
(
"going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
...
...
@@ -328,19 +305,22 @@ class SingleTrainer(TranspileTrainer):
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
"epoch.
save_inference_interval"
,
-
1
))
envs
.
get_global_env
(
name
+
"
save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
"epoch.save_inference_feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
"epoch.save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
:
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
"epoch.
save_inference_path"
,
None
)
dirname
=
envs
.
get_global_env
(
name
+
"
save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
...
...
@@ -353,12 +333,14 @@ class SingleTrainer(TranspileTrainer):
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
"epoch.
save_checkpoint_interval"
,
-
1
))
envs
.
get_global_env
(
name
+
"
save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
"epoch.save_checkpoint_path"
,
None
)
assert
dirname
is
not
None
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
...
...
core/utils/envs.py
浏览文件 @
986c7679
...
...
@@ -68,7 +68,8 @@ def set_global_envs(envs):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"executor"
)
and
isinstance
(
v
,
list
):
elif
(
k
==
"dataset"
or
k
==
"phase"
or
k
==
"runner"
)
and
isinstance
(
v
,
list
):
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
...
...
models/rank/dnn/config.yaml
浏览文件 @
986c7679
...
...
@@ -21,12 +21,18 @@ workspace: "paddlerec.models.rank.dnn"
# dataset列表
dataset
:
-
name
:
dataset_
2
# 名字,用来区分不同的dataset
-
name
:
dataset_
train
# 名字,用来区分不同的dataset
batch_size
:
2
type
:
DataLoader
# 或者QueueDataset
data_path
:
"
{workspace}/data/sample_data/train"
# 数据路径
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
-
name
:
dataset_infer
# 名字,用来区分不同的dataset
batch_size
:
2
type
:
DataLoader
# 或者QueueDataset
data_path
:
"
{workspace}/data/sample_data/test"
# 数据路径
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
# 超参数
hyper_parameters
:
...
...
@@ -42,22 +48,29 @@ hyper_parameters:
dense_input_dim
:
13
fc_sizes
:
[
512
,
256
,
128
,
32
]
# executor配置
epoch
:
name
:
trainer_class
:
single
save_checkpoint_interval
:
2
# 保存模型
save_inference_interval
:
4
# 保存预测模型
save_checkpoint_path
:
"
increment"
# 保存模型路径
save_inference_path
:
"
inference"
# 保存预测模型路径
#save_inference_feed_varnames: [] # 预测模型feed vars
#save_inference_fetch_varnames: [] # 预测模型 fetch vars
#init_model_path: "xxxx" # 加载模型
mode
:
runner1
# runner配置
runner
:
-
name
:
runner1
class
:
single_train
save_checkpoint_interval
:
2
# 保存模型
save_inference_interval
:
4
# 保存预测模型
save_checkpoint_path
:
"
increment"
# 保存模型路径
save_inference_path
:
"
inference"
# 保存预测模型路径
#save_inference_feed_varnames: [] # 预测模型feed vars
#save_inference_fetch_varnames: [] # 预测模型 fetch vars
#init_model_path: "xxxx" # 加载模型
-
name
:
runner2
class
:
single_infer
init_model_path
:
"
increment/0"
# 加载模型
# 执行器,每轮要跑的所有
模型
executor
:
-
name
:
train
# 执行器,每轮要跑的所有
阶段
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# 模型路径
dataset_name
:
dataset_
2
# 名字,用来区分不同的阶段
dataset_name
:
dataset_
train
# 名字,用来区分不同的阶段
thread_num
:
1
# 线程数
is_infer
:
False
# 是否是infer
# - name: phase2
# model: "{workspace}/model.py" # 模型路径
# dataset_name: dataset_infer # 名字,用来区分不同的阶段
# thread_num: 1 # 线程数
models/rank/dnn/model.py
浏览文件 @
986c7679
...
...
@@ -77,17 +77,21 @@ class Model(ModelBase):
self
.
predict
=
predict
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
predict
,
label
=
self
.
label_input
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
if
is_infer
:
self
.
_infer_results
[
"AUC"
]
=
auc
self
.
_infer_results
[
"BATCH_AUC"
]
=
batch_auc
return
self
.
_metrics
[
"AUC"
]
=
auc
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label_input
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
_cost
=
avg_cost
def
optimizer
(
self
):
optimizer
=
fluid
.
optimizer
.
Adam
(
self
.
learning_rate
,
lazy_mode
=
True
)
...
...
run.py
浏览文件 @
986c7679
...
...
@@ -18,7 +18,7 @@ import subprocess
import
argparse
import
tempfile
import
yaml
import
copy
from
paddlerec.core.factory
import
TrainerFactory
from
paddlerec.core.utils
import
envs
from
paddlerec.core.utils
import
util
...
...
@@ -27,8 +27,8 @@ engines = {}
device
=
[
"CPU"
,
"GPU"
]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
engine_choices
=
[
"SINGLE
"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER
"
,
"TDM_
CLUST
ER"
"SINGLE
_TRAIN"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE
"
,
"TDM_
LOCAL_CLUSTER"
,
"TDM_CLUSTER"
,
"SINGLE_INF
ER"
]
custom_model
=
[
'TDM'
]
model_name
=
""
...
...
@@ -38,7 +38,8 @@ def engine_registry():
engines
[
"TRANSPILER"
]
=
{}
engines
[
"PSLIB"
]
=
{}
engines
[
"TRANSPILER"
][
"SINGLE"
]
=
single_engine
engines
[
"TRANSPILER"
][
"SINGLE_TRAIN"
]
=
single_train_engine
engines
[
"TRANSPILER"
][
"SINGLE_INFER"
]
=
single_infer_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
...
...
@@ -51,7 +52,6 @@ def get_inters_from_yaml(file, filters):
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
flattens
=
envs
.
flatten_environs
(
_envs
)
inters
=
{}
for
k
,
v
in
flattens
.
items
():
for
f
in
filters
:
...
...
@@ -60,15 +60,50 @@ def get_inters_from_yaml(file, filters):
return
inters
def
get_all_inters_from_yaml
(
file
,
filters
):
with
open
(
file
,
'r'
)
as
rb
:
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
all_flattens
=
{}
def
fatten_env_namespace
(
namespace_nests
,
local_envs
):
for
k
,
v
in
local_envs
.
items
():
if
isinstance
(
v
,
dict
):
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
fatten_env_namespace
(
nests
,
v
)
elif
(
k
==
"dataset"
or
k
==
"phase"
or
k
==
"runner"
)
and
isinstance
(
v
,
list
):
for
i
in
v
:
if
i
.
get
(
"name"
)
is
None
:
raise
ValueError
(
"name must be in dataset list "
,
v
)
nests
=
copy
.
deepcopy
(
namespace_nests
)
nests
.
append
(
k
)
nests
.
append
(
i
[
"name"
])
fatten_env_namespace
(
nests
,
i
)
else
:
global_k
=
"."
.
join
(
namespace_nests
+
[
k
])
all_flattens
[
global_k
]
=
v
fatten_env_namespace
([],
_envs
)
ret
=
{}
for
k
,
v
in
all_flattens
.
items
():
for
f
in
filters
:
if
k
.
startswith
(
f
):
ret
[
k
]
=
v
return
ret
def
get_engine
(
args
):
transpiler
=
get_transpiler
()
run_extras
=
get_inters_from_yaml
(
args
.
model
,
[
"train."
,
"epoch."
])
with
open
(
args
.
model
,
'r'
)
as
rb
:
envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
run_extras
=
get_all_inters_from_yaml
(
args
.
model
,
[
"train."
,
"runner."
])
engine
=
run_extras
.
get
(
"train.engine"
,
None
)
if
engine
is
None
:
engine
=
run_extras
.
get
(
"
epoch.trainer_
class"
,
None
)
engine
=
run_extras
.
get
(
"
runner."
+
envs
[
"mode"
]
+
".
class"
,
None
)
if
engine
is
None
:
engine
=
"single
"
engine
=
"single
_train"
engine
=
engine
.
upper
()
if
engine
not
in
engine_choices
:
raise
ValueError
(
"train.engin can not be chosen in {}"
.
format
(
...
...
@@ -120,15 +155,27 @@ def get_trainer_prefix(args):
return
""
def
single_engine
(
args
):
def
single_
train_
engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleTrainer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single"
single_envs
[
"train.trainer.engine"
]
=
"single
_train
"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
single_infer_engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleInfer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single_infer"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录