Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
907b2145
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
907b2145
编写于
7月 07, 2020
作者:
O
overlordmax
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix readme.md and config.yaml
上级
c311341f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
14 addition
and
12 deletion
+14
-12
README.md
README.md
+1
-0
README_CN.md
README_CN.md
+1
-0
models/rank/fibinet/config.yaml
models/rank/fibinet/config.yaml
+6
-6
models/rank/flen/config.yaml
models/rank/flen/config.yaml
+6
-6
未找到文件。
README.md
浏览文件 @
907b2145
...
...
@@ -56,6 +56,7 @@
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| Rank | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
README_CN.md
浏览文件 @
907b2145
...
...
@@ -61,6 +61,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
| 排序 | [Fibinet](models/rank/fibinet/model.py) | ✓ | ✓ | ✓ | ✓ | [RecSys19][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction]( https://arxiv.org/pdf/1905.09433.pdf) |
...
...
models/rank/fibinet/config.yaml
浏览文件 @
907b2145
...
...
@@ -59,8 +59,8 @@ runner:
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_checkpoint_path
:
"
increment_model
_fibinet
"
# save checkpoint path
save_inference_path
:
"
inference
_fibinet
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
...
...
@@ -75,8 +75,8 @@ runner:
device
:
gpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_checkpoint_path
:
"
increment_model
_fibinet
"
# save checkpoint path
save_inference_path
:
"
inference
_fibinet
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
...
...
@@ -87,14 +87,14 @@ runner:
class
:
infer
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_fibinet
"
# load model path
phases
:
[
phase2
]
-
name
:
single_gpu_infer
class
:
infer
# device to run training or infer
device
:
gpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_fibinet
"
# load model path
phases
:
[
phase2
]
# runner will run all the phase in each epoch
...
...
models/rank/flen/config.yaml
浏览文件 @
907b2145
...
...
@@ -57,8 +57,8 @@ runner:
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_checkpoint_path
:
"
increment_model
_flen
"
# save checkpoint path
save_inference_path
:
"
inference
_flen
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
...
...
@@ -73,8 +73,8 @@ runner:
device
:
gpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment_model"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_checkpoint_path
:
"
increment_model
_flen
"
# save checkpoint path
save_inference_path
:
"
inference
_flen
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
...
...
@@ -85,14 +85,14 @@ runner:
class
:
infer
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_flen
"
# load model path
phases
:
[
phase2
]
-
name
:
single_gpu_infer
class
:
infer
# device to run training or infer
device
:
gpu
init_model_path
:
"
increment_model"
# load model path
init_model_path
:
"
increment_model
_flen
"
# load model path
phases
:
[
phase2
]
# runner will run all the phase in each epoch
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录