Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
887fdc4f
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
887fdc4f
编写于
9月 25, 2020
作者:
Y
yinhaofeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
readme
上级
ccbe52fd
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
28 addition
and
23 deletion
+28
-23
models/rank/logistic_regression/config.yaml
models/rank/logistic_regression/config.yaml
+2
-0
models/rank/logistic_regression/readme.md
models/rank/logistic_regression/readme.md
+26
-23
未找到文件。
models/rank/logistic_regression/config.yaml
浏览文件 @
887fdc4f
...
@@ -55,11 +55,13 @@ runner:
...
@@ -55,11 +55,13 @@ runner:
save_checkpoint_path
:
"
increment"
save_checkpoint_path
:
"
increment"
save_inference_path
:
"
inference"
save_inference_path
:
"
inference"
print_interval
:
1
print_interval
:
1
phases
:
phase1
-
name
:
infer_runner
-
name
:
infer_runner
class
:
infer
class
:
infer
device
:
cpu
device
:
cpu
init_model_path
:
"
increment/1"
init_model_path
:
"
increment/1"
print_interval
:
1
print_interval
:
1
phases
:
infer_phase
phase
:
phase
:
...
...
models/rank/logistic_regression/readme.md
浏览文件 @
887fdc4f
...
@@ -112,7 +112,7 @@ logistic_regression模型的组网比较直观,本质是一个二分类任务
...
@@ -112,7 +112,7 @@ logistic_regression模型的组网比较直观,本质是一个二分类任务
### sigmoid层
### sigmoid层
将离散数据通过embedding查表得到的值,与连续数据的输入进行相乘再累加的操作,合为一个整体输入。我们又构造了一个初始化为0,shape为1的变量,将其与累加结果相加一起输入sigmoid中得到分类结果。
将离散数据通过embedding查表得到的值,与连续数据的输入进行相乘再累加的操作,合为一个整体输入。我们又构造了一个初始化为0,shape为1的变量,将其与累加结果相加一起输入sigmoid中得到分类结果。
在这里,可以将这个过程理解为一个全连接层。通过embedding查表获得权重w,构造的变量b_linear即为偏置变量b,再经过激活函数为sigmoid。
在这里,可以将这个过程理解为一个全连接层。通过embedding查表获得权重w,构造的变量b_linear即为偏置变量b,再经过激活函数为sigmoid
得到输出
。
### Loss及Auc计算
### Loss及Auc计算
-
预测的结果通过直接通过激活函数sigmoid给出,为了得到每条样本分属于正负样本的概率,我们将预测结果和
`1-predict`
合并起来得到predict_2d,以便接下来计算auc。
-
预测的结果通过直接通过激活函数sigmoid给出,为了得到每条样本分属于正负样本的概率,我们将预测结果和
`1-predict`
合并起来得到predict_2d,以便接下来计算auc。
...
@@ -128,7 +128,7 @@ logistic_regression模型的组网比较直观,本质是一个二分类任务
...
@@ -128,7 +128,7 @@ logistic_regression模型的组网比较直观,本质是一个二分类任务
| 模型 | auc | batch_size | thread_num| epoch_num| Time of each epoch |
| 模型 | auc | batch_size | thread_num| epoch_num| Time of each epoch |
| :------| :------ | :------| :------ | :------| :------ |
| :------| :------ | :------| :------ | :------| :------ |
| LR | 0.7
243 | 1024 | 10 | 2 | 约3
小时 |
| LR | 0.7
611 | 1024 | 10 | 2 | 约4
小时 |
1.
确认您当前所在目录为PaddleRec/models/rank/deepfm
1.
确认您当前所在目录为PaddleRec/models/rank/deepfm
2.
在data目录下运行数据一键处理脚本,命令如下:
2.
在data目录下运行数据一键处理脚本,命令如下:
...
@@ -143,6 +143,7 @@ cd ..
...
@@ -143,6 +143,7 @@ cd ..
将train_sample中的data_path改为{workspace}/data/slot_train_data
将train_sample中的data_path改为{workspace}/data/slot_train_data
将infer_sample中的batch_size从5改为1024
将infer_sample中的batch_size从5改为1024
将infer_sample中的data_path改为{workspace}/data/slot_test_data
将infer_sample中的data_path改为{workspace}/data/slot_test_data
根据自己的需求调整phase中的线程数
4.
运行命令,模型会进行两个epoch的训练,然后预测第二个epoch,并获得相应auc指标
4.
运行命令,模型会进行两个epoch的训练,然后预测第二个epoch,并获得相应auc指标
```
```
python -m paddlerec.run -m ./config.yaml
python -m paddlerec.run -m ./config.yaml
...
@@ -158,28 +159,30 @@ Warning:please make sure there are no hidden files in the dataset folder and che
...
@@ -158,28 +159,30 @@ Warning:please make sure there are no hidden files in the dataset folder and che
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Running SingleInferStartup.
Running SingleInferStartup.
Running SingleInferRunner.
Running SingleInferRunner.
load persistables from increment/0
load persistables from increment/1
2020-09-18 11:43:23,533-INFO: [Infer] batch: 1, time_each_interval: 0.18s, AUC: [0.72274697]
2020-09-25 01:38:01,653-INFO: [Infer] batch: 1, time_each_interval: 0.64s, AUC: [0.76076558]
2020-09-18 11:43:23,564-INFO: [Infer] batch: 2, time_each_interval: 0.03s, AUC: [0.72274716]
2020-09-25 01:38:01,890-INFO: [Infer] batch: 2, time_each_interval: 0.24s, AUC: [0.76076588]
2020-09-18 11:43:23,624-INFO: [Infer] batch: 3, time_each_interval: 0.06s, AUC: [0.72274746]
2020-09-25 01:38:02,116-INFO: [Infer] batch: 3, time_each_interval: 0.23s, AUC: [0.76076599]
2020-09-18 11:43:23,695-INFO: [Infer] batch: 4, time_each_interval: 0.07s, AUC: [0.72274772]
2020-09-25 01:38:02,351-INFO: [Infer] batch: 4, time_each_interval: 0.23s, AUC: [0.76076598]
2020-09-18 11:43:23,841-INFO: [Infer] batch: 5, time_each_interval: 0.15s, AUC: [0.72274817]
2020-09-25 01:38:02,603-INFO: [Infer] batch: 5, time_each_interval: 0.25s, AUC: [0.76076637]
2020-09-18 11:43:23,922-INFO: [Infer] batch: 6, time_each_interval: 0.08s, AUC: [0.72274794]
2020-09-25 01:38:02,841-INFO: [Infer] batch: 6, time_each_interval: 0.24s, AUC: [0.76076656]
2020-09-18 11:43:23,989-INFO: [Infer] batch: 7, time_each_interval: 0.07s, AUC: [0.72274796]
2020-09-25 01:38:03,076-INFO: [Infer] batch: 7, time_each_interval: 0.24s, AUC: [0.76076668]
2020-09-18 11:43:24,058-INFO: [Infer] batch: 8, time_each_interval: 0.07s, AUC: [0.72274792]
2020-09-25 01:38:03,308-INFO: [Infer] batch: 8, time_each_interval: 0.23s, AUC: [0.76076662]
2020-09-18 11:43:24,130-INFO: [Infer] batch: 9, time_each_interval: 0.07s, AUC: [0.72274824]
2020-09-25 01:38:03,541-INFO: [Infer] batch: 9, time_each_interval: 0.23s, AUC: [0.76076698]
2020-09-18 11:43:24,195-INFO: [Infer] batch: 10, time_each_interval: 0.07s, AUC: [0.72274831]
2020-09-25 01:38:03,772-INFO: [Infer] batch: 10, time_each_interval: 0.23s, AUC: [0.76076676]
2020-09-25 01:38:04,025-INFO: [Infer] batch: 11, time_each_interval: 0.25s, AUC: [0.76076655]
...
...
2020-09-18 12:57:53,777-INFO: [Infer] batch: 17959, time_each_interval: 0.07s, AUC: [0.72434065]
2020-09-25 02:00:14,043-INFO: [Infer] batch: 4482, time_each_interval: 0.26s, AUC: [0.76117275]
2020-09-18 12:57:53,848-INFO: [Infer] batch: 17960, time_each_interval: 0.07s, AUC: [0.72434041]
2020-09-25 02:00:14,338-INFO: [Infer] batch: 4483, time_each_interval: 0.29s, AUC: [0.7611731]
2020-09-18 12:57:53,910-INFO: [Infer] batch: 17961, time_each_interval: 0.06s, AUC: [0.72434046]
2020-09-25 02:00:14,614-INFO: [Infer] batch: 4484, time_each_interval: 0.27s, AUC: [0.76117289]
2020-09-18 12:57:53,974-INFO: [Infer] batch: 17962, time_each_interval: 0.06s, AUC: [0.72434055]
2020-09-25 02:00:14,858-INFO: [Infer] batch: 4485, time_each_interval: 0.25s, AUC: [0.76117328]
2020-09-18 12:57:54,045-INFO: [Infer] batch: 17963, time_each_interval: 0.07s, AUC: [0.72434008]
2020-09-25 02:00:15,187-INFO: [Infer] batch: 4486, time_each_interval: 0.33s, AUC: [0.7611733]
2020-09-18 12:57:54,111-INFO: [Infer] batch: 17964, time_each_interval: 0.07s, AUC: [0.72434022]
2020-09-25 02:00:15,483-INFO: [Infer] batch: 4487, time_each_interval: 0.30s, AUC: [0.76117372]
2020-09-18 12:57:54,177-INFO: [Infer] batch: 17965, time_each_interval: 0.07s, AUC: [0.72434011]
2020-09-25 02:00:15,729-INFO: [Infer] batch: 4488, time_each_interval: 0.25s, AUC: [0.76117397]
2020-09-18 12:57:54,246-INFO: [Infer] batch: 17966, time_each_interval: 0.07s, AUC: [0.72434023]
2020-09-25 02:00:15,965-INFO: [Infer] batch: 4489, time_each_interval: 0.24s, AUC: [0.7611739]
2020-09-18 12:57:54,309-INFO: [Infer] batch: 17967, time_each_interval: 0.06s, AUC: [0.72434046]
2020-09-25 02:00:16,244-INFO: [Infer] batch: 4490, time_each_interval: 0.28s, AUC: [0.76117379]
Infer infer_phase of epoch increment/0 done, use time: 1414.92181587, global metrics: AUC=0.72434046
2020-09-25 02:00:16,560-INFO: [Infer] batch: 4491, time_each_interval: 0.32s, AUC: [0.76117405]
Infer infer_phase of epoch increment/1 done, use time: 1335.62605906, global metrics: AUC=0.76117405
PaddleRec Finish
PaddleRec Finish
```
```
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录