提交 61fc88ae 编写于 作者: Y yaoxuefeng

add PNN and update rank models list

上级 0dbbb781
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug: false
workspace: "paddlerec.models.rank.nfm"
dataset:
- name: train_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"
- name: infer_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/../dataset/Criteo_data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"
hyper_parameters:
# 用户自定义配置
optimizer:
class: Adam
learning_rate: 0.0001
sparse_feature_number: 1086460
sparse_feature_dim: 9
is_sparse: False
deep_input_size: 50
use_inner_product: True
num_field: 39
fc_sizes: [32, 32]
reg: 0.001
act: "relu"
mode: train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner:
- name: train_runner
trainer_class: single_train
epochs: 1
device: cpu
init_model_path: ""
save_checkpoint_interval: 1
save_inference_interval: 1
save_checkpoint_path: "increment"
save_inference_path: "inference"
print_interval: 1
- name: infer_runner
trainer_class: single_infer
epochs: 1
device: cpu
init_model_path: "increment/0"
print_interval: 1
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: train_sample
thread_num: 1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
import paddle
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.is_distributed = True if envs.get_trainer(
) == "CtrTrainer" else False
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None)
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None)
self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
False)
self.deep_input_size = envs.get_global_env(
"hyper_parameters.deep_input_size", 50)
self.use_inner_product = envs.get_global_env(
"hyper_parameters.use_inner_product", None)
self.layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes",
None)
self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
self.num_field = envs.get_global_env("hyper_parameters.num_field",
None)
self.act = envs.get_global_env("hyper_parameters.act", None)
def net(self, inputs, is_infer=False):
raw_feat_idx = self._sparse_data_var[1] # (batch_size * num_field) * 1
raw_feat_value = self._dense_data_var[0] # batch_size * num_field
self.label = self._sparse_data_var[0] # batch_size * 1
init_value_ = 0.1
feat_idx = raw_feat_idx
feat_value = fluid.layers.reshape(
raw_feat_value,
[-1, self.num_field, 1]) # batch_size * num_field * 1
# ------------------------- first order term --------------------------
first_weights_re = fluid.embedding(
input=feat_idx,
is_sparse=self.is_sparse,
is_distributed=self.is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, 1],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_),
regularizer=fluid.regularizer.L1DecayRegularizer(self.reg))
) # (batch_size * num_field) * 1 * 1(embedding_size)
first_weights = fluid.layers.reshape(
first_weights_re,
shape=[-1, self.num_field, 1]) # batch_size * num_field * 1
y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
1) # batch_size * 1
# ------------------------- Embedding --------------------------
feat_embeddings_re = fluid.embedding(
input=feat_idx,
is_sparse=self.is_sparse,
is_distributed=self.is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(self.sparse_feature_dim))))
) # (batch_size * num_field) * 1 * embedding_size
feat_embeddings = fluid.layers.reshape(
feat_embeddings_re,
shape=[-1, self.num_field, self.sparse_feature_dim
]) # batch_size * num_field * embedding_size
feat_embeddings = feat_embeddings * feat_value # batch_size * num_field * embedding_size
# ------------------------- Linear Signal --------------------------
linear_input_size = self.num_field * self.sparse_feature_dim
flaten_feat_embedding = fluid.layers.reshape(
x=feat_embeddings, shape=[-1, linear_input_size])
w_z_linear_weights = fluid.layers.create_parameter(
shape=[linear_input_size, self.deep_input_size], dtype="float32")
linear_signal = fluid.layers.matmul(
flaten_feat_embedding,
w_z_linear_weights) # batch_size * deep_input_size
# ------------------------- Quardatic Singal --------------------------
quadratic_output = []
if self.use_inner_product:
w_p_quardatic_weights = fluid.layers.create_parameter(
shape=[self.deep_input_size, self.num_field], dtype="float32")
for i in range(self.deep_input_size):
transpose_embedding = fluid.layers.transpose(
feat_embeddings, perm=[0, 2, 1])
theta = fluid.layers.elementwise_mul(
transpose_embedding, w_p_quardatic_weights[i], axis=-1)
quadratic_output.append(
paddle.norm(
fluid.layers.reduce_sum(
theta, dim=1),
p=2,
axis=1,
keepdim=True))
else:
w_p_quardatic_weights_outer = fluid.layers.create_parameter(
shape=[
self.deep_input_size, self.sparse_feature_dim,
self.sparse_feature_dim
],
dtype="float32")
embedding_sum = fluid.layers.reduce_sum(feat_embeddings, dim=1)
p = fluid.layers.matmul(
fluid.layers.reshape(
embedding_sum, shape=[0, -1, 1]),
fluid.layers.reshape(
embedding_sum, shape=[0, 1, -1]))
for i in range(self.deep_input_size):
theta = fluid.layers.elementwise_mul(
p, w_p_quardatic_weights_outer[i, :, :], axis=-1)
quadratic_output.append(
fluid.layers.reshape(
fluid.layers.reduce_sum(
theta, dim=[1, 2]),
shape=[-1, 1]))
quadratic_signal = fluid.layers.concat(quadratic_output, axis=1)
y_dnn = linear_signal + quadratic_signal
y_dnn = fluid.layers.relu6(y_dnn, threshold=10000000.0)
for s in self.layer_sizes:
y_dnn = fluid.layers.fc(
input=y_dnn,
size=s,
act=self.act,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
y_dnn = fluid.layers.fc(
input=y_dnn,
size=1,
act=None,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
# ------------------------- Predict --------------------------
self.predict = fluid.layers.sigmoid(y_first_order + y_dnn)
cost = fluid.layers.log_loss(
input=self.predict, label=fluid.layers.cast(self.label, "float32"))
avg_cost = fluid.layers.reduce_sum(cost)
self._cost = avg_cost
predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var
# 注意
本模型默认实现要求paddle版本 >= 2.0, 后续提供基于paddle1.7版本
```
pip install paddlepaddle==2.0.0a0
```
...@@ -23,9 +23,14 @@ ...@@ -23,9 +23,14 @@
| 模型 | 简介 | 论文 | | 模型 | 简介 | 论文 |
| :------------------: | :--------------------: | :---------: | | :------------------: | :--------------------: | :---------: |
| DNN | 多层神经网络 | -- | | DNN | 多层神经网络 | -- |
| Logistic Regression | 逻辑回归 | -- |
| FM | 因子分解机 | [Factorization Machine](https://ieeexplore.ieee.org/abstract/document/5694074)(2010) |
| PNN | Product Network | [Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf)(2016) |
| wide&deep | Deep + wide(LR) | [Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454)(2016) | | wide&deep | Deep + wide(LR) | [Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454)(2016) |
| DeepFM | DeepFM | [DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf)(2017) | | DeepFM | DeepFM | [DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/pdf/1703.04247.pdf)(2017) |
| DCN | Deep Cross Network | [Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754)(2017) | | DCN | Deep Cross Network | [Deep & Cross Network for Ad Click Predictions](https://dl.acm.org/doi/pdf/10.1145/3124749.3124754)(2017) |
| NFM | Neural Factorization Machines | [Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/doi/pdf/10.1145/3077136.3080777)(2017) |
| AFM | Attentional Factorization Machines | [Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf)(2017) |
| xDeepFM | xDeepFM | [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023)(2018) | | xDeepFM | xDeepFM | [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023)(2018) |
| DIN | Deep Interest Network | [Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823)(2018) | | DIN | Deep Interest Network | [Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823)(2018) |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册