Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
1f5a1862
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f5a1862
编写于
8月 18, 2020
作者:
L
liuyuhui
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'vslyu-fixhidefiles' of
https://github.com/vslyu/PaddleRec
into vslyu-fixhidefiles
上级
15d8501e
8d442864
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
388 addition
and
4 deletion
+388
-4
README.md
README.md
+1
-0
core/factory.py
core/factory.py
+13
-0
core/trainers/finetuning_trainer.py
core/trainers/finetuning_trainer.py
+140
-0
core/trainers/framework/network.py
core/trainers/framework/network.py
+83
-1
core/trainers/framework/startup.py
core/trainers/framework/startup.py
+121
-1
doc/pre_train_model.md
doc/pre_train_model.md
+15
-0
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+0
-1
run.py
run.py
+15
-1
未找到文件。
README.md
浏览文件 @
1f5a1862
...
...
@@ -147,6 +147,7 @@ python -m paddlerec.run -m models/rank/dnn/config.yaml
*
[
启动分布式训练
](
doc/distributed_train.md
)
*
[
启动预测
](
doc/predict.md
)
*
[
快速部署
](
doc/serving.md
)
*
[
预训练模型
](
doc/pre_train_model.md
)
### 进阶教程
...
...
core/factory.py
浏览文件 @
1f5a1862
...
...
@@ -22,6 +22,19 @@ trainers = {}
def
trainer_registry
():
trainers
[
"SingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer.py"
)
trainers
[
"ClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"cluster_trainer.py"
)
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_coding_trainer.py"
)
trainers
[
"CtrModulTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_modul_trainer.py"
)
trainers
[
"TDMSingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_single_trainer.py"
)
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_cluster_trainer.py"
)
trainers
[
"OnlineLearningTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"online_learning_trainer.py"
)
# Definition of procedure execution process
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_coding_trainer.py"
)
...
...
core/trainers/finetuning_trainer.py
0 → 100644
浏览文件 @
1f5a1862
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
General Trainer, applicable to many situations: Single/Cluster/Local_Cluster + PS/COLLECTIVE
"""
from
__future__
import
print_function
import
os
from
paddlerec.core.utils
import
envs
from
paddlerec.core.trainer
import
Trainer
,
EngineMode
,
FleetMode
class
FineTuningTrainer
(
Trainer
):
"""
Trainer for various situations
"""
def
__init__
(
self
,
config
=
None
):
Trainer
.
__init__
(
self
,
config
)
self
.
processor_register
()
self
.
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
self
.
runner_env_name
=
"runner."
+
self
.
_context
[
"runner_name"
]
def
processor_register
(
self
):
print
(
"processor_register begin"
)
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'network_pass'
,
self
.
network
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
runner
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
instance_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".instance_class_path"
,
default_value
=
None
)
if
instance_class_path
:
instance_class
=
envs
.
lazy_instance_by_fliename
(
instance_class_path
,
"Instance"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
:
instance_class_name
=
"SingleInstance"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
instance_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"instance.py"
)
instance_class
=
envs
.
lazy_instance_by_fliename
(
instance_path
,
instance_class_name
)(
context
)
instance_class
.
instance
(
context
)
def
network
(
self
,
context
):
network_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".network_class_path"
,
default_value
=
None
)
if
network_class_path
:
network_class
=
envs
.
lazy_instance_by_fliename
(
network_class_path
,
"Network"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
:
network_class_name
=
"FineTuningNetwork"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
network_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"network.py"
)
network_class
=
envs
.
lazy_instance_by_fliename
(
network_path
,
network_class_name
)(
context
)
network_class
.
build_network
(
context
)
def
startup
(
self
,
context
):
startup_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".startup_class_path"
,
default_value
=
None
)
if
startup_class_path
:
startup_class
=
envs
.
lazy_instance_by_fliename
(
startup_class_path
,
"Startup"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
and
not
context
[
"is_infer"
]:
startup_class_name
=
"FineTuningStartup"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
startup_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"startup.py"
)
startup_class
=
envs
.
lazy_instance_by_fliename
(
startup_path
,
startup_class_name
)(
context
)
startup_class
.
startup
(
context
)
def
runner
(
self
,
context
):
runner_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".runner_class_path"
,
default_value
=
None
)
if
runner_class_path
:
runner_class
=
envs
.
lazy_instance_by_fliename
(
runner_class_path
,
"Runner"
)(
context
)
else
:
if
self
.
engine
==
EngineMode
.
SINGLE
and
not
context
[
"is_infer"
]:
runner_class_name
=
"SingleRunner"
else
:
raise
ValueError
(
"FineTuningTrainer can only support SingleTraining."
)
runner_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"runner.py"
)
runner_class
=
envs
.
lazy_instance_by_fliename
(
runner_path
,
runner_class_name
)(
context
)
runner_class
.
run
(
context
)
def
terminal
(
self
,
context
):
terminal_class_path
=
envs
.
get_global_env
(
self
.
runner_env_name
+
".terminal_class_path"
,
default_value
=
None
)
if
terminal_class_path
:
terminal_class
=
envs
.
lazy_instance_by_fliename
(
terminal_class_path
,
"Terminal"
)(
context
)
terminal_class
.
terminal
(
context
)
else
:
terminal_class_name
=
"TerminalBase"
if
self
.
engine
!=
EngineMode
.
SINGLE
and
self
.
fleet_mode
!=
FleetMode
.
COLLECTIVE
:
terminal_class_name
=
"PSTerminal"
terminal_path
=
os
.
path
.
join
(
self
.
abs_dir
,
"framework"
,
"terminal.py"
)
terminal_class
=
envs
.
lazy_instance_by_fliename
(
terminal_path
,
terminal_class_name
)(
context
)
terminal_class
.
terminal
(
context
)
context
[
'is_exit'
]
=
True
core/trainers/framework/network.py
浏览文件 @
1f5a1862
...
...
@@ -23,7 +23,7 @@ from paddlerec.core.trainers.framework.dataset import DataLoader, QueueDataset
__all__
=
[
"NetworkBase"
,
"SingleNetwork"
,
"PSNetwork"
,
"PslibNetwork"
,
"CollectiveNetwork"
"CollectiveNetwork"
,
"FineTuningNetwork"
]
...
...
@@ -109,6 +109,88 @@ class SingleNetwork(NetworkBase):
context
[
"status"
]
=
"startup_pass"
class
FineTuningNetwork
(
NetworkBase
):
"""R
"""
def
__init__
(
self
,
context
):
print
(
"Running FineTuningNetwork."
)
def
build_network
(
self
,
context
):
context
[
"model"
]
=
{}
for
model_dict
in
context
[
"phases"
]:
context
[
"model"
][
model_dict
[
"name"
]]
=
{}
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
envs
.
os_path_adapter
(
envs
.
workspace_adapter
(
model_dict
[
"model"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
])
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
context
[
"is_infer"
])
data_loader
=
DataLoader
(
context
)
data_loader
.
get_dataloader
(
context
,
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
context
[
"is_infer"
])
finetuning_varnames
=
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".finetuning_aspect_varnames"
,
default_value
=
[])
if
len
(
finetuning_varnames
)
==
0
:
raise
ValueError
(
"nothing need to be fine tuning, you may use other traning mode"
)
if
len
(
finetuning_varnames
)
!=
1
:
raise
ValueError
(
"fine tuning mode can only accept one varname now"
)
varname
=
finetuning_varnames
[
0
]
finetuning_vars
=
train_program
.
global_block
().
vars
[
varname
]
finetuning_vars
.
stop_gradient
=
True
optimizer
=
model
.
optimizer
()
optimizer
.
minimize
(
model
.
_cost
)
context
[
"model"
][
model_dict
[
"name"
]][
"main_program"
]
=
train_program
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
]
=
startup_program
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]
=
scope
context
[
"model"
][
model_dict
[
"name"
]][
"model"
]
=
model
context
[
"model"
][
model_dict
[
"name"
]][
"default_main_program"
]
=
train_program
.
clone
()
context
[
"model"
][
model_dict
[
"name"
]][
"compiled_program"
]
=
None
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]:
type
=
envs
.
get_global_env
(
"dataset."
+
dataset
[
"name"
]
+
".type"
)
if
type
==
"QueueDataset"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
"name"
]]
=
dataset_class
.
create_dataset
(
dataset
[
"name"
],
context
)
context
[
"status"
]
=
"startup_pass"
class
PSNetwork
(
NetworkBase
):
def
__init__
(
self
,
context
):
print
(
"Running PSNetwork."
)
...
...
core/trainers/framework/startup.py
浏览文件 @
1f5a1862
...
...
@@ -17,9 +17,13 @@ from __future__ import print_function
import
warnings
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddlerec.core.utils
import
envs
__all__
=
[
"StartupBase"
,
"SingleStartup"
,
"PSStartup"
,
"CollectiveStartup"
]
__all__
=
[
"StartupBase"
,
"SingleStartup"
,
"PSStartup"
,
"CollectiveStartup"
,
"FineTuningStartup"
]
class
StartupBase
(
object
):
...
...
@@ -65,6 +69,122 @@ class SingleStartup(StartupBase):
context
[
"status"
]
=
"train_pass"
class
FineTuningStartup
(
StartupBase
):
"""R
"""
def
__init__
(
self
,
context
):
self
.
op_name_scope
=
"op_namescope"
self
.
clip_op_name_scope
=
"@CLIP"
self
.
self
.
op_role_var_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
(
)
print
(
"Running SingleStartup."
)
def
_is_opt_role_op
(
self
,
op
):
# NOTE: depend on oprole to find out whether this op is for
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
def
_get_params_grads
(
self
,
program
):
"""
Get optimizer operators, parameters and gradients from origin_program
Returns:
opt_ops (list): optimize operators.
params_grads (dict): parameter->gradient.
"""
block
=
program
.
global_block
()
params_grads
=
[]
# tmp set to dedup
optimize_params
=
set
()
origin_var_dict
=
program
.
global_block
().
vars
for
op
in
block
.
ops
:
if
self
.
_is_opt_role_op
(
op
):
# Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
# delete clip op from opt_ops when run in Parameter Server mode
if
self
.
op_name_scope
in
op
.
all_attrs
(
)
and
self
.
clip_op_name_scope
in
op
.
attr
(
self
.
op_name_scope
):
op
.
_set_attr
(
"op_role"
,
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
))
continue
if
op
.
attr
(
self
.
op_role_var_attr_name
):
param_name
=
op
.
attr
(
self
.
op_role_var_attr_name
)[
0
]
grad_name
=
op
.
attr
(
self
.
op_role_var_attr_name
)[
1
]
if
not
param_name
in
optimize_params
:
optimize_params
.
add
(
param_name
)
params_grads
.
append
([
origin_var_dict
[
param_name
],
origin_var_dict
[
grad_name
]
])
return
params_grads
@
staticmethod
def
is_persistable
(
var
):
"""
Check whether the given variable is persistable.
Args:
var(Variable): The variable to be checked.
Returns:
bool: True if the given `var` is persistable
False if not.
Examples:
.. code-block:: python
import paddle.fluid as fluid
param = fluid.default_main_program().global_block().var('fc.b')
res = fluid.io.is_persistable(param)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
READER
:
return
False
return
var
.
persistable
def
load
(
self
,
context
,
is_fleet
=
False
,
main_program
=
None
):
dirname
=
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"going to load "
,
dirname
)
params_grads
=
self
.
_get_params_grads
(
main_program
)
update_params
=
[
p
for
p
,
_
in
params_grads
]
need_load_vars
=
[]
parameters
=
list
(
filter
(
FineTuningStartup
.
is_persistable
,
main_program
.
list_vars
()))
for
param
in
parameters
:
if
param
not
in
update_params
:
need_load_vars
.
append
(
param
)
fluid
.
io
.
load_vars
(
context
[
"exe"
],
dirname
,
main_program
,
need_load_vars
)
print
(
"load from {} success"
.
format
(
dirname
))
def
startup
(
self
,
context
):
for
model_dict
in
context
[
"phases"
]:
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
train_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"main_program"
]
startup_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
context
[
"exe"
].
run
(
startup_prog
)
self
.
load
(
context
,
main_program
=
train_prog
)
context
[
"status"
]
=
"train_pass"
class
PSStartup
(
StartupBase
):
def
__init__
(
self
,
context
):
print
(
"Running PSStartup."
)
...
...
doc/pre_train_model.md
0 → 100644
浏览文件 @
1f5a1862
# PaddleRec 预训练模型
PaddleRec基于业务实践,使用真实数据,产出了推荐领域算法的若干预训练模型,方便开发者进行算法调研。
## 文本分类预训练模型
### 获取地址
```
bash
wget xxx.tar.gz
```
### 使用方法
解压后,得到的是一个paddle的模型文件夹,使用
`PaddleRec/models/contentunderstanding/classification_finetue`
模型进行加载
models/rank/dnn/config.yaml
浏览文件 @
1f5a1862
...
...
@@ -67,7 +67,6 @@ runner:
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
10
phases
:
[
phase1
]
...
...
run.py
浏览文件 @
1f5a1862
...
...
@@ -16,7 +16,6 @@ import os
import
subprocess
import
sys
import
argparse
import
tempfile
import
warnings
import
copy
...
...
@@ -39,6 +38,7 @@ def engine_registry():
engines
[
"TRANSPILER"
][
"INFER"
]
=
single_infer_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER_TRAIN"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER_TRAIN"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"ONLINE_LEARNING"
]
=
online_learning
engines
[
"PSLIB"
][
"TRAIN"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER_TRAIN"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER_TRAIN"
]
=
cluster_mpi_engine
...
...
@@ -259,6 +259,20 @@ def single_infer_engine(args):
return
trainer
def
online_learning
(
args
):
trainer
=
"OnlineLearningTrainer"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"online_learning"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
def
master
():
from
paddlerec.core.engine.cluster.cluster
import
ClusterEngine
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录