Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
1a2cafdc
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1a2cafdc
编写于
8月 05, 2020
作者:
W
wuzhihua
提交者:
GitHub
8月 05, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #162 from 123malin/gnn
Gnn
上级
d02319d8
5a5abe15
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
283 addition
and
52 deletion
+283
-52
core/metric.py
core/metric.py
+2
-2
core/trainers/framework/runner.py
core/trainers/framework/runner.py
+0
-1
models/recall/gnn/config.yaml
models/recall/gnn/config.yaml
+13
-11
models/recall/gnn/data/download.py
models/recall/gnn/data/download.py
+7
-2
models/recall/gnn/data/preprocess.py
models/recall/gnn/data/preprocess.py
+11
-21
models/recall/gnn/data_prepare.sh
models/recall/gnn/data_prepare.sh
+20
-10
models/recall/gnn/model.py
models/recall/gnn/model.py
+6
-5
models/recall/gnn/readme.md
models/recall/gnn/readme.md
+224
-0
未找到文件。
core/metric.py
浏览文件 @
1a2cafdc
...
...
@@ -69,8 +69,8 @@ class Metric(object):
global_metrics
=
dict
()
for
key
in
self
.
_global_metric_state_vars
:
varname
,
dtype
=
self
.
_global_metric_state_vars
[
key
]
global_metrics
[
key
]
=
self
.
get_global_metric_state
(
fleet
,
scope
,
varname
)
global_metrics
[
key
]
=
self
.
_
get_global_metric_state
(
fleet
,
scope
,
varname
)
return
self
.
_calculate
(
global_metrics
)
...
...
core/trainers/framework/runner.py
浏览文件 @
1a2cafdc
...
...
@@ -520,7 +520,6 @@ class SingleInferRunner(RunnerBase):
def
run
(
self
,
context
):
self
.
_dir_check
(
context
)
self
.
epoch_model_name_list
.
sort
()
for
index
,
epoch_name
in
enumerate
(
self
.
epoch_model_name_list
):
for
model_dict
in
context
[
"phases"
]:
model_class
=
context
[
"model"
][
model_dict
[
"name"
]][
"model"
]
...
...
models/recall/gnn/config.yaml
浏览文件 @
1a2cafdc
...
...
@@ -42,30 +42,32 @@ hyper_parameters:
gnn_propogation_steps
:
1
# select runner by name
mode
:
train_runner
mode
:
[
single_cpu_train
,
single_cpu_infer
]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
train_runner
-
name
:
single_cpu_train
class
:
train
# num of epochs
epochs
:
2
epochs
:
5
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_checkpoint_path
:
"
increment
_gnn
"
# save checkpoint path
save_inference_path
:
"
inference
_gnn
"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
1
-
name
:
infer_runner
phases
:
[
phase1
]
-
name
:
single_cpu_infer
class
:
infer
# device to run training or infer
device
:
cpu
print_interval
:
1
init_model_path
:
"
increment/0"
# load model path
init_model_path
:
"
increment_gnn"
# load model path
phases
:
[
phase2
]
# runner will run all the phase in each epoch
phase
:
...
...
@@ -73,7 +75,7 @@ phase:
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#
- name: phase2
#
model: "{workspace}/model.py" # user-defined model
#
dataset_name: dataset_infer # select dataset by name
#
thread_num: 1
-
name
:
phase2
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_infer
# select dataset by name
thread_num
:
1
models/recall/gnn/data/download.py
浏览文件 @
1a2cafdc
...
...
@@ -57,5 +57,10 @@ def _download_file(url, savepath, print_progress):
progress
(
"[%-50s] %.2f%%"
%
(
'='
*
50
,
100
),
end
=
True
)
_download_file
(
"https://sr-gnn.bj.bcebos.com/train-item-views.csv"
,
"./train-item-views.csv"
,
True
)
if
sys
.
argv
[
1
]
==
"diginetica"
:
_download_file
(
"https://sr-gnn.bj.bcebos.com/train-item-views.csv"
,
"./train-item-views.csv"
,
True
)
elif
sys
.
argv
[
1
]
==
"yoochoose"
:
_download_file
(
"https://paddlerec.bj.bcebos.com/gnn%2Fyoochoose-clicks.dat"
,
"./yoochoose-clicks.dat"
,
True
)
models/recall/gnn/data/preprocess.py
浏览文件 @
1a2cafdc
...
...
@@ -41,39 +41,29 @@ with open(dataset, "r") as f:
curdate
=
None
for
data
in
reader
:
sessid
=
data
[
'session_id'
]
if
curdate
and
not
curid
==
sessid
:
date
=
''
if
opt
.
dataset
==
'yoochoose'
:
date
=
time
.
mktime
(
time
.
strptime
(
curdate
[:
19
],
'%Y-%m-%dT%H:%M:%S'
))
else
:
date
=
time
.
mktime
(
time
.
strptime
(
curdate
,
'%Y-%m-%d'
))
sess_date
[
curid
]
=
date
curid
=
sessid
date
=
''
if
opt
.
dataset
==
'yoochoose'
:
item
=
data
[
'item_id'
]
date
=
time
.
mktime
(
time
.
strptime
(
data
[
'timestamp'
][:
19
],
'%Y-%m-%dT%H:%M:%S'
))
else
:
item
=
data
[
'item_id'
],
int
(
data
[
'timeframe'
])
curdate
=
''
if
opt
.
dataset
==
'yoochoose'
:
curdate
=
data
[
'timestamp'
]
else
:
curdate
=
data
[
'eventdate'
]
date
=
time
.
mktime
(
time
.
strptime
(
data
[
'eventdate'
],
'%Y-%m-%d'
))
if
sessid
not
in
sess_date
:
sess_date
[
sessid
]
=
date
elif
date
>
sess_date
[
sessid
]:
sess_date
[
sessid
]
=
date
if
sessid
in
sess_clicks
:
sess_clicks
[
sessid
]
+=
[
item
]
else
:
sess_clicks
[
sessid
]
=
[
item
]
ctr
+=
1
date
=
''
if
opt
.
dataset
==
'yoochoose'
:
date
=
time
.
mktime
(
time
.
strptime
(
curdate
[:
19
],
'%Y-%m-%dT%H:%M:%S'
))
else
:
date
=
time
.
mktime
(
time
.
strptime
(
curdate
,
'%Y-%m-%d'
))
if
opt
.
dataset
!=
'yoochoose'
:
for
i
in
list
(
sess_clicks
):
sorted_clicks
=
sorted
(
sess_clicks
[
i
],
key
=
operator
.
itemgetter
(
1
))
sess_clicks
[
i
]
=
[
c
[
0
]
for
c
in
sorted_clicks
]
sess_date
[
curid
]
=
date
print
(
"-- Reading data @ %ss"
%
datetime
.
datetime
.
now
())
# Filter out length 1 sessions
...
...
@@ -160,7 +150,7 @@ def obtian_tra():
train_dates
+=
[
date
]
train_seqs
+=
[
outseq
]
print
(
item_ctr
)
# 43098, 37484
with
open
(
"./
diginetica/
config.txt"
,
"w"
)
as
fout
:
with
open
(
"./config.txt"
,
"w"
)
as
fout
:
fout
.
write
(
str
(
item_ctr
)
+
"
\n
"
)
return
train_ids
,
train_dates
,
train_seqs
...
...
models/recall/gnn/data_prepare.sh
浏览文件 @
1a2cafdc
...
...
@@ -15,21 +15,31 @@
# limitations under the License.
set
-e
echo
"begin to download data"
cd
data
&&
python download.py
mkdir
diginetica
python preprocess.py
--dataset
diginetica
dataset
=
$1
src
=
$1
if
[[
$src
==
"yoochoose1_4"
||
$src
==
"yoochoose1_64"
]]
;
then
src
=
"yoochoose"
elif
[[
$src
==
"diginetica"
]]
;
then
src
=
"diginetica"
else
echo
"Usage: sh data_prepare.sh [diginetica|yoochoose1_4|yoochoose1_64]"
exit
1
fi
echo
"begin to download data"
cd
data
&&
python download.py
$src
mkdir
$dataset
python preprocess.py
--dataset
$src
echo
"begin to convert data (binary -> txt)"
python convert_data.py
--data_dir
diginetica
python convert_data.py
--data_dir
$dataset
cat
diginetica/train.txt |
wc
-l
>>
diginetica/
config.txt
cat
${
dataset
}
/train.txt |
wc
-l
>>
config.txt
rm
-rf
train
&&
mkdir
train
mv
diginetica
/train.txt train
mv
${
dataset
}
/train.txt train
rm
-rf
test
&&
mkdir test
mv
diginetica/test.txt
test
mv
diginetica/config.txt ./config.txt
mv
${
dataset
}
/test.txt
test
models/recall/gnn/model.py
浏览文件 @
1a2cafdc
...
...
@@ -20,6 +20,7 @@ import paddle.fluid.layers as layers
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
ModelBase
from
paddlerec.core.metrics
import
RecallK
class
Model
(
ModelBase
):
...
...
@@ -235,16 +236,16 @@ class Model(ModelBase):
softmax
=
layers
.
softmax_with_cross_entropy
(
logits
=
logits
,
label
=
inputs
[
6
])
# [batch_size, 1]
self
.
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
inputs
[
6
],
k
=
20
)
acc
=
RecallK
(
input
=
logits
,
label
=
inputs
[
6
],
k
=
20
)
self
.
_cost
=
self
.
loss
if
is_infer
:
self
.
_infer_results
[
'
acc'
]
=
self
.
acc
self
.
_infer_results
[
'
loss
'
]
=
self
.
loss
self
.
_infer_results
[
'
P@20'
]
=
acc
self
.
_infer_results
[
'
LOSS
'
]
=
self
.
loss
return
self
.
_metrics
[
"LOSS"
]
=
self
.
loss
self
.
_metrics
[
"
train_acc"
]
=
self
.
acc
self
.
_metrics
[
"
Train_P@20"
]
=
acc
def
optimizer
(
self
):
step_per_epoch
=
self
.
corpus_size
//
self
.
train_batch_size
...
...
models/recall/gnn/readme.md
0 → 100644
浏览文件 @
1a2cafdc
# GNN
以下是本例的简要目录结构及说明:
```
├── data #样例数据
├── train
├── train.txt
├── test
├── test.txt
├── download.py
├── convert_data.py
├── preprocess.py
├── __init__.py
├── README.md # 文档
├── model.py #模型文件
├── config.yaml #配置文件
├── data_prepare.sh #一键数据处理脚本
├── reader.py #训练数据reader
├── evaluate_reader.py # 预测数据reader
```
注:在阅读该示例前,建议您先了解以下内容:
[
paddlerec入门教程
](
https://github.com/PaddlePaddle/PaddleRec/blob/master/README.md
)
---
## 内容
-
[
模型简介
](
#模型简介
)
-
[
数据准备
](
#数据准备
)
-
[
运行环境
](
#运行环境
)
-
[
快速开始
](
#快速开始
)
-
[
论文复现
](
#论文复现
)
-
[
进阶使用
](
#进阶使用
)
-
[
FAQ
](
#FAQ
)
## 模型简介
SR-GNN模型的介绍可以参阅论文
[
Session-based Recommendation with Graph Neural Networks
](
https://arxiv.org/abs/1811.00855
)
。
本文解决的是Session-based Recommendation这一问题,过程大致分为以下四步:
1.
首先对所有的session序列通过有向图进行建模。
2.
然后通过GNN,学习每个node(item)的隐向量表示
3.
通过一个attention架构模型得到每个session的embedding
4.
最后通过一个softmax层进行全表预测
本示例中,我们复现了论文效果,在DIGINETICA数据集上P@20可以达到50.7。
同时推荐用户参考
[
IPython Notebook demo
](
https://aistudio.baidu.com/aistudio/projectDetail/124382
)
本模型配置默认使用demo数据集,若进行精度验证,请参考
[
论文复现
](
#论文复现
)
部分。
本项目支持功能
训练:单机CPU、单机单卡GPU、单机多卡GPU、本地模拟参数服务器训练、增量训练,配置请参考
[
启动训练
](
https://github.com/PaddlePaddle/PaddleRec/blob/master/doc/train.md
)
预测:单机CPU、单机单卡GPU ;配置请参考
[
PaddleRec 离线预测
](
https://github.com/PaddlePaddle/PaddleRec/blob/master/doc/predict.md
)
## 数据处理
本示例中数据处理共包含三步:
-
Step1: 原始数据数据集下载,本示例提供了两个开源数据集:DIGINETICA和Yoochoose,可选其中任意一个训练本模型。数据下载命令及原始数据格式如下所示。若采用diginetica数据集,执行完该命令之后,会在data目录下得到原始数据文件train-item-views.csv。若采用yoochoose数据集,执行完该命令之后,会在data目录下得到原始数据文件yoochoose-clicks.dat。
```
cd data && python download.py diginetica # or yoochoose
```
> [Yoochooses](https://2015.recsyschallenge.com/challenge.html)数据集来源于RecSys Challenge 2015,原始数据包含如下字段:
1.
Session ID – the id of the session. In one session there are one or many clicks.
2.
Timestamp – the time when the click occurred.
3.
Item ID – the unique identifier of the item.
4.
Category – the category of the item.
> [DIGINETICA](https://competitions.codalab.org/competitions/11161#learn_the_details-data2)数据集来源于CIKM Cup 2016 _Personalized E-Commerce Search Challenge_项目。原始数据包含如下字段:
1. sessionId - the id of the session. In one session there are one or many clicks.
2. userId - the id of the user, with anonymized user ids.
3. itemId - the unique identifier of the item.
4. timeframe - time since the first query in a session, in milliseconds.
5. eventdate - calendar date.
-
Step2: 数据预处理。
1.
以session_id为key合并原始数据集,得到每个session的日期,及顺序点击列表。
2.
过滤掉长度为1的session;过滤掉点击次数小于5的items。
3.
训练集、测试集划分。原始数据集里最新日期七天内的作为训练集,更早之前的数据作为测试集。
```
cd data && python preprocess.py --dataset diginetica # or yoochoose
```
-
Step3: 数据整理。 将训练文件统一放在data/train目录下,测试文件统一放在data/test目录下。
```
cat data/diginetica/train.txt | wc -l >> data/config.txt # or yoochoose1_4 or yoochoose1_64
rm -rf data/train/*
rm -rf data/test/*
mv data/diginetica/train.txt data/train
mv data/diginetica/test.txt data/test
```
数据处理完成后,data/train目录存放训练数据,data/test目录下存放测试数据,数据格式如下:
```
#session\tlabel
10,11,12,12,13,14\t15
```
data/config.txt中存放数据统计信息,第一行代表训练集中item总数,用以配置模型词表大小,第二行代表训练集大小。
方便起见, 我们提供了一键式数据处理脚本:
```
sh data_prepare.sh diginetica # or yoochoose1_4 or yoochoose1_64
```
## 运行环境
PaddlePaddle>=1.7.2
python 2.7/3.5/3.6/3.7
PaddleRec >=0.1
os : windows/linux/macos
## 快速开始
### 单机训练
CPU环境
在config.yaml文件中设置好设备,epochs等。
```
# select runner by name
mode: [single_cpu_train, single_cpu_infer]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner:
- name: single_cpu_train
class: train
# num of epochs
epochs: 2
# device to run training or infer
device: cpu
save_checkpoint_interval: 1 # save model interval of epochs
save_inference_interval: 1 # save inference
save_checkpoint_path: "increment_gnn" # save checkpoint path
save_inference_path: "inference_gnn" # save inference path
save_inference_feed_varnames: [] # feed vars of save inference
save_inference_fetch_varnames: [] # fetch vars of save inference
init_model_path: "" # load model path
print_interval: 1
phases: [phase1]
```
### 单机预测
CPU环境
在config.yaml文件中设置好epochs、device等参数。
```
- name: single_cpu_infer
class: infer
# device to run training or infer
device: cpu
print_interval: 1
init_model_path: "increment_gnn" # load model path
phases: [phase2]
```
### 运行
```
python -m paddlerec.run -m paddlerec.models.recall.gnn
```
### 结果展示
样例数据训练结果展示:
```
Running SingleStartup.
Running SingleRunner.
batch: 1, LOSS: [10.67443], InsCnt: [200.], RecallCnt: [0.], Acc(Recall@20): [0.]
batch: 2, LOSS: [10.672471], InsCnt: [300.], RecallCnt: [0.], Acc(Recall@20): [0.]
batch: 3, LOSS: [10.672463], InsCnt: [400.], RecallCnt: [1.], Acc(Recall@20): [0.0025]
batch: 4, LOSS: [10.670724], InsCnt: [500.], RecallCnt: [2.], Acc(Recall@20): [0.004]
batch: 5, LOSS: [10.66949], InsCnt: [600.], RecallCnt: [2.], Acc(Recall@20): [0.00333333]
batch: 6, LOSS: [10.670102], InsCnt: [700.], RecallCnt: [2.], Acc(Recall@20): [0.00285714]
batch: 7, LOSS: [10.671348], InsCnt: [800.], RecallCnt: [2.], Acc(Recall@20): [0.0025]
...
epoch 0 done, use time: 2926.6897077560425, global metrics: LOSS=[6.0788856], InsCnt=719400.0 RecallCnt=224033.0 Acc(Recall@20)=0.3114164581595774
...
epoch 4 done, use time: 3083.101449728012, global metrics: LOSS=[4.249889], InsCnt=3597000.0 RecallCnt=2070666.0 Acc(Recall@20)=0.5756647206005004
```
样例数据预测结果展示:
```
Running SingleInferStartup.
Running SingleInferRunner.
load persistables from increment_gnn/2
batch: 1, InsCnt: [200.], RecallCnt: [96.], Acc(Recall@20): [0.48], LOSS: [5.7198644]
batch: 2, InsCnt: [300.], RecallCnt: [153.], Acc(Recall@20): [0.51], LOSS: [5.4096317]
batch: 3, InsCnt: [400.], RecallCnt: [210.], Acc(Recall@20): [0.525], LOSS: [5.300991]
batch: 4, InsCnt: [500.], RecallCnt: [258.], Acc(Recall@20): [0.516], LOSS: [5.6269655]
batch: 5, InsCnt: [600.], RecallCnt: [311.], Acc(Recall@20): [0.5183333], LOSS: [5.39276]
batch: 6, InsCnt: [700.], RecallCnt: [352.], Acc(Recall@20): [0.50285715], LOSS: [5.633842]
batch: 7, InsCnt: [800.], RecallCnt: [406.], Acc(Recall@20): [0.5075], LOSS: [5.342844]
batch: 8, InsCnt: [900.], RecallCnt: [465.], Acc(Recall@20): [0.51666665], LOSS: [4.918761]
...
Infer phase2 of epoch 0 done, use time: 549.1640813350677, global metrics: InsCnt=60800.0 RecallCnt=31083.0 Acc(Recall@20)=0.511233552631579, LOSS=[5.8957024]
```
## 论文复现
用原论文的完整数据复现论文效果需要在config.yaml修改超参:
-
batch_size: 修改config.yaml中dataset_train数据集的batch_size为100。
-
epochs: 修改config.yaml中runner的epochs为5。
-
sparse_feature_number: 不同训练数据集(diginetica or yoochoose)配置不一致,diginetica数据集配置为43098,yoochoose数据集配置为37484。具体见数据处理后得到的data/config.txt文件中第一行。
-
corpus_size: 不同训练数据集配置不一致,diginetica数据集配置为719470,yoochoose数据集配置为5917745。具体见数据处理后得到的data/config.txt文件中第二行。
使用cpu训练 5轮 测试Recall@20:0.51367
修改后运行方案:修改config.yaml中的'workspace'为config.yaml的目录位置,执行
```
python -m paddlerec.run -m /home/your/dir/config.yaml #调试模式 直接指定本地config的绝对路径
```
## 进阶使用
## FAQ
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录