tdm_cluster_trainer.py 4.8 KB
Newer Older
C
chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
C
chengmo 已提交
20
import logging
C
chengmo 已提交
21
import numpy as np
C
chengmo 已提交
22 23 24 25 26
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

27 28
from paddlerec.core.utils import envs
from paddlerec.core.trainers.cluster_trainer import ClusterTrainer
C
chengmo 已提交
29 30


C
chengmo 已提交
31 32 33 34
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
special_param = ["TDM_Tree_Travel", "TDM_Tree_Layer", "TDM_Tree_Info"]
C
chengmo 已提交
35 36


C
fix  
chengmo 已提交
37
class TDMClusterTrainer(ClusterTrainer):
C
chengmo 已提交
38
    def server(self, context):
C
chengmo 已提交
39
        namespace = "train.startup"
C
chengmo 已提交
40 41 42 43 44
        init_model_path = envs.get_global_env(
            "cluster.init_model_path", "", namespace)
        assert init_model_path != "", "Cluster train must has init_model for TDM"
        fleet.init_server(init_model_path)
        logger.info("TDM: load model from {}".format(init_model_path))
C
chengmo 已提交
45 46 47
        fleet.run_server()
        context['is_exit'] = True

C
chengmo 已提交
48 49 50
    def startup(self, context):
        self._exe.run(fleet.startup_program)

C
chengmo 已提交
51 52
        namespace = "train.startup"
        load_tree = envs.get_global_env(
C
fix  
chengmo 已提交
53
            "tree.load_tree", True, namespace)
C
chengmo 已提交
54
        self.tree_layer_path = envs.get_global_env(
C
fix  
chengmo 已提交
55
            "tree.tree_layer_path", "", namespace)
C
chengmo 已提交
56
        self.tree_travel_path = envs.get_global_env(
C
fix  
chengmo 已提交
57
            "tree.tree_travel_path", "", namespace)
C
chengmo 已提交
58
        self.tree_info_path = envs.get_global_env(
C
fix  
chengmo 已提交
59
            "tree.tree_info_path", "", namespace)
C
chengmo 已提交
60 61 62 63 64 65 66

        save_init_model = envs.get_global_env(
            "cluster.save_init_model", False, namespace)
        init_model_path = envs.get_global_env(
            "cluster.init_model_path", "", namespace)

        if load_tree:
T
tangwei 已提交
67
            # covert tree to tensor, set it into Fluid's variable.
C
chengmo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
            for param_name in special_param:
                param_t = fluid.global_scope().find_var(param_name).get_tensor()
                param_array = self.tdm_prepare(param_name)
                param_t.set(param_array.astype('int32'), self._place)

        if save_init_model:
            logger.info("Begin Save Init model.")
            fluid.io.save_persistables(
                executor=self._exe, dirname=init_model_path)
            logger.info("End Save Init model.")

        context['status'] = 'train_pass'

C
chengmo 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def tdm_prepare(self, param_name):
        if param_name == "TDM_Tree_Travel":
            travel_array = self.tdm_travel_prepare()
            return travel_array
        elif param_name == "TDM_Tree_Layer":
            layer_array, _ = self.tdm_layer_prepare()
            return layer_array
        elif param_name == "TDM_Tree_Info":
            info_array = self.tdm_info_prepare()
            return info_array
        else:
            raise " {} is not a special tdm param name".format(param_name)

    def tdm_travel_prepare(self):
        """load tdm tree param from npy/list file"""
        travel_array = np.load(self.tree_travel_path)
        logger.info("TDM Tree leaf node nums: {}".format(
            travel_array.shape[0]))
        return travel_array

    def tdm_layer_prepare(self):
        """load tdm tree param from npy/list file"""
        layer_list = []
        layer_list_flat = []
        with open(self.tree_layer_path, 'r') as fin:
            for line in fin.readlines():
                l = []
                layer = (line.split('\n'))[0].split(',')
                for node in layer:
                    if node:
                        layer_list_flat.append(node)
                        l.append(node)
                layer_list.append(l)
        layer_array = np.array(layer_list_flat)
        layer_array = layer_array.reshape([-1, 1])
        logger.info("TDM Tree max layer: {}".format(len(layer_list)))
        logger.info("TDM Tree layer_node_num_list: {}".format(
            [len(i) for i in layer_list]))
        return layer_array, layer_list

    def tdm_info_prepare(self):
        """load tdm tree param from list file"""
        info_array = np.load(self.tree_info_path)
        return info_array