preprocess.py 2.9 KB
Newer Older
Y
yinhaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#encoding=utf-8

import os
import sys
import numpy as np
import random

f = open("./zhidao", "r")
lines = f.readlines()
f.close()

#建立字典
word_dict = {}
for line in lines:
    line = line.strip().split("\t")
    text = line[0].split(" ") + line[1].split(" ")
    for word in text:
        if word in word_dict:
Y
change  
yinhaofeng 已提交
19
            continue
Y
yinhaofeng 已提交
20
        else:
Y
change  
yinhaofeng 已提交
21
            word_dict[word] = len(word_dict) + 1
Y
yinhaofeng 已提交
22 23 24 25 26 27 28 29 30

f = open("./zhidao", "r")
lines = f.readlines()
f.close()

lines = [line.strip().split("\t") for line in lines]

#建立以query为key,以负例为value的字典
neg_dict = {}
Y
change  
yinhaofeng 已提交
31
for line in lines:
Y
yinhaofeng 已提交
32 33 34 35 36 37 38 39
    if line[2] == "0":
        if line[0] in neg_dict:
            neg_dict[line[0]].append(line[1])
        else:
            neg_dict[line[0]] = [line[1]]

#建立以query为key,以正例为value的字典
pos_dict = {}
Y
change  
yinhaofeng 已提交
40
for line in lines:
Y
yinhaofeng 已提交
41 42 43 44 45 46
    if line[2] == "1":
        if line[0] in pos_dict:
            pos_dict[line[0]].append(line[1])
        else:
            pos_dict[line[0]] = [line[1]]

Y
change  
yinhaofeng 已提交
47 48 49 50 51 52 53 54 55 56
#划分训练集和测试集
query_list = list(pos_dict.keys())
#print(len(query))
random.shuffle(query_list)
train_query = query_list[:90]
test_query = query_list[90:]

#获得训练集
train_set = []
for query in train_query:
Y
yinhaofeng 已提交
57 58 59 60
    for pos in pos_dict[query]:
        if query not in neg_dict:
            continue
        for neg in neg_dict[query]:
Y
change  
yinhaofeng 已提交
61 62
            train_set.append([query, pos, neg])
random.shuffle(train_set)
Y
yinhaofeng 已提交
63

Y
change  
yinhaofeng 已提交
64 65 66 67 68 69 70 71
#获得测试集
test_set = []
for query in test_query:
    for pos in pos_dict[query]:
        test_set.append([query, pos, 1])
    if query not in neg_dict:
        continue
    for neg in neg_dict[query]:
Y
change  
yinhaofeng 已提交
72
        test_set.append([query, neg, 0])
Y
change  
yinhaofeng 已提交
73
random.shuffle(test_set)
Y
yinhaofeng 已提交
74 75 76

#训练集中的query,pos,neg转化为词袋
f = open("train.txt", "w")
Y
change  
yinhaofeng 已提交
77
for line in train_set:
Y
yinhaofeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    query = line[0].strip().split(" ")
    pos = line[1].strip().split(" ")
    neg = line[2].strip().split(" ")
    query_token = [0] * (len(word_dict) + 1)
    for word in query:
        query_token[word_dict[word]] = 1
    pos_token = [0] * (len(word_dict) + 1)
    for word in pos:
        pos_token[word_dict[word]] = 1
    neg_token = [0] * (len(word_dict) + 1)
    for word in neg:
        neg_token[word_dict[word]] = 1
    f.write(','.join([str(x) for x in query_token]) + "\t" + ','.join([
        str(x) for x in pos_token
    ]) + "\t" + ','.join([str(x) for x in neg_token]) + "\n")
f.close()

#测试集中的query和pos转化为词袋
f = open("test.txt", "w")
fa = open("label.txt", "w")
for line in test_set:
    query = line[0].strip().split(" ")
    pos = line[1].strip().split(" ")
    label = line[2]
    query_token = [0] * (len(word_dict) + 1)
    for word in query:
        query_token[word_dict[word]] = 1
    pos_token = [0] * (len(word_dict) + 1)
    for word in pos:
        pos_token[word_dict[word]] = 1
    f.write(','.join([str(x) for x in query_token]) + "\t" + ','.join(
        [str(x) for x in pos_token]) + "\n")
Y
change  
yinhaofeng 已提交
110
    fa.write(str(label) + "\n")
Y
yinhaofeng 已提交
111 112
f.close()
fa.close()