build.py 8.6 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15
import copy
T
tangwei 已提交
16

T
tangwei 已提交
17 18
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
T
tangwei 已提交
19
import yaml
T
tangwei 已提交
20

21 22
from paddlerec.core.model import Model
from paddlerec.core.utils import table
T
tangwei 已提交
23

T
tangwei 已提交
24

X
xiexionghang 已提交
25
def create(config):
X
xiexionghang 已提交
26 27 28
    """
    Create a model instance by config
    Args:
T
tangwei 已提交
29
        config(dict) : desc model type and net
X
xiexionghang 已提交
30 31 32
    Return:
        Model Instance
    """
X
xiexionghang 已提交
33 34
    model = None
    if config['mode'] == 'fluid':
T
tangwei 已提交
35
        model = YamlModel(config)
T
tangwei 已提交
36
        model.train_net()
X
xiexionghang 已提交
37
    return model
T
tangwei 已提交
38

X
xiexionghang 已提交
39

T
tangwei 已提交
40
class YamlModel(Model):
X
xiexionghang 已提交
41 42
    """R
    """
T
tangwei 已提交
43

X
xiexionghang 已提交
44
    def __init__(self, config):
X
xiexionghang 已提交
45 46
        """R
        """
T
tangwei 已提交
47
        Model.__init__(self, config)
T
tangwei 已提交
48 49 50 51 52 53 54
        self._config = config
        self._name = config['name']
        f = open(config['layer_file'], 'r')
        self._build_nodes = yaml.safe_load(f.read())
        self._build_phase = ['input', 'param', 'summary', 'layer']
        self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}}
        self._inference_meta = {'dependency': {}, 'params': {}}
T
tangwei 已提交
55

T
tangwei 已提交
56
    def train_net(self):
X
xiexionghang 已提交
57 58 59 60 61 62 63 64 65
        """R
        build a fluid model with config
        Return:
            modle_instance(dict)
                train_program
                startup_program
                inference_param : all params name list
                table: table-meta to ps-server
        """
X
xiexionghang 已提交
66 67
        for layer in self._build_nodes['layer']:
            self._build_param['inner_layer'][layer['name']] = layer
T
tangwei 已提交
68

X
xiexionghang 已提交
69 70 71
        self._build_param['table'] = {}
        self._build_param['model']['train_program'] = fluid.Program()
        self._build_param['model']['startup_program'] = fluid.Program()
X
xiexionghang 已提交
72
        with fluid.program_guard(self._build_param['model']['train_program'], \
T
tangwei 已提交
73
                                 self._build_param['model']['startup_program']):
X
xiexionghang 已提交
74 75 76 77 78
            with fluid.unique_name.guard():
                for phase in self._build_phase:
                    if self._build_nodes[phase] is None:
                        continue
                    for node in self._build_nodes[phase]:
T
tangwei 已提交
79
                        exec("""layer=layer.{}(node)""".format(node['class']))
X
xiexionghang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                        layer_output, extend_output = layer.generate(self._config['mode'], self._build_param)
                        self._build_param['layer'][node['name']] = layer_output
                        self._build_param['layer_extend'][node['name']] = extend_output
                        if extend_output is None:
                            continue
                        if 'loss' in extend_output:
                            if self._cost is None:
                                self._cost = extend_output['loss']
                            else:
                                self._cost += extend_output['loss']
                        if 'data_var' in extend_output:
                            self._data_var += extend_output['data_var']
                        if 'metric_label' in extend_output and extend_output['metric_label'] is not None:
                            self._metrics[extend_output['metric_label']] = extend_output['metric_dict']

                        if 'inference_param' in extend_output:
X
xiexionghang 已提交
96 97
                            inference_param = extend_output['inference_param']
                            param_name = inference_param['name']
X
xiexionghang 已提交
98
                            if param_name not in self._build_param['table']:
T
tangwei 已提交
99
                                self._build_param['table'][param_name] = {'params': []}
T
tangwei 已提交
100
                                table_meta = table.TableMeta.alloc_new_table(inference_param['table_id'])
X
xiexionghang 已提交
101
                                self._build_param['table'][param_name]['_meta'] = table_meta
X
xiexionghang 已提交
102
                            self._build_param['table'][param_name]['params'] += inference_param['params']
X
xiexionghang 已提交
103
        pass
T
tangwei 已提交
104

X
xiexionghang 已提交
105 106
    @classmethod
    def build_optimizer(self, params):
X
xiexionghang 已提交
107 108
        """R
        """
X
xiexionghang 已提交
109 110 111 112 113 114 115 116
        optimizer_conf = params['optimizer_conf']
        strategy = None
        if 'strategy' in optimizer_conf:
            strategy = optimizer_conf['strategy']
            stat_var_names = []
            metrics = params['metrics']
            for name in metrics:
                model_metrics = metrics[name]
X
xiexionghang 已提交
117
                stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics]
X
xiexionghang 已提交
118
            strategy['stat_var_names'] = list(set(stat_var_names))
X
xiexionghang 已提交
119
        optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \
T
tangwei 已提交
120 121
                              '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')'
        exec(optimizer_generator)
X
xiexionghang 已提交
122 123 124 125
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        return optimizer

    def dump_model_program(self, path):
X
xiexionghang 已提交
126 127
        """R
        """
X
xiexionghang 已提交
128 129 130 131 132 133 134
        with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['train_program']
        with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['startup_program']
        pass

    def shrink(self, params):
X
xiexionghang 已提交
135 136
        """R
        """
X
xiexionghang 已提交
137 138 139 140 141 142 143
        scope = params['scope']
        decay = params['decay']
        for param_table in self._build_param['table']:
            table_id = self._build_param['table'][param_table]['_meta']._table_id
            fleet.shrink_dense_table(decay, scope=scope, table_id=table_id)

    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
144 145
        """R
        """
X
xiexionghang 已提交
146 147 148
        pass

    def dump_inference_param(self, params):
X
xiexionghang 已提交
149 150
        """R
        """
X
xiexionghang 已提交
151 152 153
        scope = params['scope']
        executor = params['executor']
        program = self._build_param['model']['train_program']
X
xiexionghang 已提交
154
        for table_name, table in self._build_param['table'].items():
X
xiexionghang 已提交
155 156 157
            fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params'])
        for infernce_item in params['inference_list']:
            params_name_list = self.inference_params(infernce_item['layer_name'])
X
xiexionghang 已提交
158
            params_var_list = [program.global_block().var(i) for i in params_name_list]
X
xiexionghang 已提交
159 160 161
            params_file_name = infernce_item['save_file_name']
            with fluid.scope_guard(scope):
                if params['save_combine']:
X
xiexionghang 已提交
162
                    fluid.io.save_vars(executor, "./", \
T
tangwei 已提交
163
                                       program, vars=params_var_list, filename=params_file_name)
X
xiexionghang 已提交
164 165
                else:
                    fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)
T
tangwei 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    def inference_params(self, inference_layer):
        """
        get params name for inference_layer
        Args:
            inference_layer(str): layer for inference
        Return:
            params(list): params name list that for inference layer
        """
        layer = inference_layer
        if layer in self._inference_meta['params']:
            return self._inference_meta['params'][layer]

        self._inference_meta['params'][layer] = []
        self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer)
        for node in self._build_nodes['layer']:
            if node['name'] not in self._inference_meta['dependency'][layer]:
                continue
            if 'inference_param' in self._build_param['layer_extend'][node['name']]:
                self._inference_meta['params'][layer] += \
                    self._build_param['layer_extend'][node['name']]['inference_param']['params']
        return self._inference_meta['params'][layer]

    def get_dependency(self, layer_graph, dest_layer):
        """
        get model of dest_layer depends on
        Args:
            layer_graph(dict) : all model in graph
        Return:
            depend_layers(list) : sub-graph model for calculate dest_layer
        """
        dependency_list = []
        if dest_layer in layer_graph:
            dependencys = copy.deepcopy(layer_graph[dest_layer]['input'])
            dependency_list = copy.deepcopy(dependencys)
            for dependency in dependencys:
                dependency_list = dependency_list + self.get_dependency(layer_graph, dependency)
T
tangwei 已提交
203
        return list(set(dependency_list))